Faculty of Engineering EM 509 - Stochastic Processes
 Answer Sheet
 Review of Basic Probability

1) First mode: Random angle

Take an arbitrary point P on the boundary of the disc. The set of all lines through that points are parameterized by an angle ϕ. The line has to lie within a sector of 60° within a range of 180°.
The probability of this chord intersects the concentric circle of radius $1=\frac{60^{\circ}}{180^{\circ}}=\frac{1}{3}$

Second mode: Random translation

Take all liens perpendicular to a fixed diameter. If the point of intersection lies on the middle half of the diameter.
The probability of this chord intersects the concentric circle of radius $1==\frac{1}{2}$

Third mode: Random area

If the midpoints of the chords lie in a disc of radius $1 / 2$, because the disc has a radius which is half the radius of the unit disc.
probability of this chord intersects the concentric circle of radius $1=\frac{\pi 1^{2}}{\pi 2^{2}}=\frac{1}{4}$
2) a) Direct measure
$F=P(\Omega) \quad x_{0} \in \Omega$ fixed

$$
\delta_{x_{0}}=\left\{\begin{array}{l}
1 ; x_{0} \in A \\
0 ; x_{0} \notin A
\end{array}\right.
$$

I. $\quad \delta_{x_{0}} \geq 0$ for $A \in F$
II. $\delta_{x_{0}}(\phi)=0$
III. A and A^{C} are disjoint events

$$
\delta_{x_{0}}\left(A \cup A^{c}\right)=\delta_{x_{0}}(\Omega)=1=\delta_{x_{0}}(A)+\delta_{x_{0}}\left(A^{C}\right)
$$

Therefore, $\delta_{x_{0}}$ is a measure.
b) Counting measure
$F=P(\Omega), \mu(A)=$ Cardinality of $A=|A|$
I. $\mu(A) \geq 0$ for all $A \in F$
II. $\mu(\phi)=0$
III. Consider the following 3 cases and let $\left\{A_{1}, A_{2}, \ldots, A_{J}, \ldots\right\}$ be a countable set of disjoint elements for $j \in \mathrm{~N}$

Case I
Assume that all A_{j} 's are finite and only finitely many A_{j} 's are non-empty

$$
\sum_{j \in \mathrm{~N}} \mu\left(A_{j}\right)=\sum_{j \in \mathrm{~N}}\left|A_{j}\right|=\left|\bigcup_{j \in \mathrm{~N}} A_{j}\right|=\mu\left(\bigcup_{j \in \mathrm{~N}}^{\cup} A_{j}\right)
$$

Case II

Assume that the cardinality of at least one A_{j} is infinite such that $\mu\left(A_{k}\right)=\infty$

$$
\mu\left(\bigcup_{j \in \mathrm{~N}} A_{k}\right)=\infty=\mu\left(A_{k}\right)+\sum_{j \in \mathrm{~N}, j \neq k} \mu\left(A_{j}\right)=\sum_{j \in \mathrm{~N}} \mu\left(A_{j}\right)
$$

Case III
Assume that infinitely many A_{j} 's are non-empty. The cardinality of $\underset{j \in \mathrm{~N}}{\bigcup} A_{j}$ is infinite due to A_{j} 's are disjoint.

$$
\mu\left(\bigcup_{j \in \mathrm{~N}} A_{k}\right)=\infty=\sum_{j \in \mathrm{~N}} \mu\left(A_{j}\right)
$$

Therefore, $\mu(A)$ is a measure.
n - total number of communicating channels
ρ-Communicationg rate of each channels
3) k - number of used channels
p - the probability of each of the channels fails
R - a random communicating rate
Suppose $i \in\{1,2, \ldots, n\}$ denote a given channel and $\varepsilon_{i}=1$ if i is active and $\varepsilon_{i}=0$ if i is failing.
The sample space Ω can be written as,
$\Omega=\left\{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) ; \varepsilon_{i} \in\{0,1\} \forall i\right\}$
Let A_{k} denote the event in which the communication rate is ρk,
$A_{k}=\left\{\omega \in \Omega, \varepsilon_{1}+\varepsilon_{2}+\ldots .+\varepsilon_{n}=k\right\}$
Hence, F : consistsof all union of A_{k},
The probability measure P can be formulated as a Binomial distribution such that, $P\left(A_{k}\right)=\binom{n}{k} \rho^{n-k}(1-\rho)^{k} ; 0<\rho<1$
4) a) The sample space Ω can be written as,

$$
\begin{aligned}
& \Omega=\left\{\omega: \omega=\left(d_{0} d_{1} \ldots d_{7} ; d_{i} \in\{0,1\}\right)\right\} \\
& F=P(\Omega)=\text { All the power set }=2^{\Omega} \\
& P(A)=\frac{\text { Cardinality of } \mathrm{A}}{\text { Cardinality of } \Omega}=\frac{|A|}{256} \text { for any event } A \in F
\end{aligned}
$$

b) Consider the following events:
$E_{1}=$ No two neighboring digits are the same
$=\{01010101,10101010\}$
$P\left(E_{1}\right)=\frac{2}{256}=\frac{1}{128}$
$E_{2}=$ Some cyclicshift of the registercontains is equal to 01100110 $=\{01100110001100111001100111001100\}$
$P\left(E_{2}\right)=\frac{4}{256}=\frac{1}{64}$
$E_{3}=$ The registercontains exactly 4 zeros
$=\left\{\omega \in \Omega ; \mathrm{d}_{0}+d_{1}+\ldots .+d_{7}=4\right\}$
$P\left(E_{3}\right)=\frac{\binom{8}{4}}{256}=\frac{70}{256}=\frac{35}{128}$
$E_{4}=$ There is a run of at least 6 consecutive ones
$=\{01111110, ゆ 111111,11111100,11111110,01111111,11111111,10111111,111111101\}$
$P\left(E_{4}\right)=\frac{8}{256}=\frac{1}{32}$
c) $P\left(E_{1} / E_{3}\right)=\frac{P\left(E_{1} \cap E_{3}\right)}{P\left(E_{3}\right)}=\frac{P\left(E_{1}\right)}{P\left(E_{3}\right)}=\frac{1}{35}$
$P\left(E_{2} / E_{3}\right)=\frac{P\left(E_{2} \cap E_{3}\right)}{P\left(E_{3}\right)}=\frac{P\left(E_{2}\right)}{P\left(E_{3}\right)}=\frac{2}{35}$
5) The sample space Ω can be written as,
$\Omega=\left\{w: w=\left(w_{1}, w_{2}, \ldots\right) ; w_{i} \in\{H, T\} \forall i\right\}$
Let E_{i} be the event $i^{t h}$ flip comes up heads
$E_{i}=\left\{w \in \Omega ; w_{i}=H\right\}, P\left(E_{i}\right)=p$
a) Heads are got for the first time exactly on the $\mathrm{n}^{\text {th }}$ flip $=\{X(w)=n\}$

$$
\begin{aligned}
\{X=n\}=\{w & =(\underbrace{T, T, T, \ldots,}_{n-1 \text { times }} H, \ldots)\} \\
=E_{1}^{c} & \cap E_{2}^{c} \cap \ldots . \cap E_{n-1}^{c} \cap E_{n} \\
P(\{X=n\}) & =P\left(E_{1}^{c} \cap E_{2}^{c} \cap \ldots \cap E_{n}\right) \\
& =P\left(E_{1}^{c}\right) P\left(E_{2}^{c}\right) \ldots P\left(E_{n-1}^{c}\right) P\left(E_{n}\right) \\
& =(1-p)^{n-1} p
\end{aligned}
$$

b) Heads are got for the first time at time 6 or later.

$$
\begin{aligned}
& \{X \geq 6\}=\{w=(T, T, T, T, T, \underset{\text { can beHor } T}{\underset{\sim}{i}}\} \\
& =E_{1}^{c} \cap E_{2}^{c} \cap \ldots . \cap E_{5}^{c} \\
& P(\{X \geq 6\})=P\left(E_{1}^{c} \cap E_{2}^{c} \cap \ldots \cap E_{5}^{c}\right) \\
& =P\left(E_{1}^{c}\right) P\left(E_{2}^{c}\right) \ldots P\left(E_{5}^{c}\right) \\
& =(1-p)^{5}
\end{aligned}
$$

c) Heads are got for the first time at the least by time $5=\{X \leq 5\}$

$$
\begin{aligned}
P(\{X \leq 5\}) & =P\left(\{X \geq 6\}^{c}\right) \\
& =1-P(\{X \geq 6\}) \\
& =1-(1-p)^{5}
\end{aligned}
$$

