Faculty of Engineering EM 509 – Stochastic Processes Answer Sheet Review of Basic Probability

1) First mode: Random angle

Take an arbitrary point P on the boundary of the disc. The set of all lines through that points are parameterized by an angle ϕ . The line has to lie within a sector of 60° within a range of 180° .

The probability of this chord intersects the concentric circle of radius $1 = \frac{60^{\circ}}{180^{\circ}} = \frac{1}{3}$

Second mode: Random translation

Take all liens perpendicular to a fixed diameter. If the point of intersection lies on the middle half of the diameter.

The probability of this chord intersects the concentric circle of radius $1 = -\frac{1}{2}$

Third mode: Random area

If the midpoints of the chords lie in a disc of radius1/2, because the disc has a radius which is half the radius of the unit disc.

probability of this chord intersects the concentric circle of radius $1 = \frac{\pi 1^2}{\pi 2^2} = \frac{1}{4}$

2) a) Direct measure

 $F = P(\Omega)$ $x_0 \in \Omega$ fixed

$$\delta_{x_0} = \begin{cases} 1; x_0 \in A \\ 0; x_0 \notin A \end{cases}$$

- I. $\delta_{x_0} \ge 0$ for $A \in F$
- II. $\delta_{x_0}(\phi) = 0$
- III. A and A^{c} are disjoint events $\delta_{x_{0}}(A \cup A^{c}) = \delta_{x_{0}}(\Omega) = 1 = \delta_{x_{0}}(A) + \delta_{x_{0}}(A^{c})$

Therefore, δ_{x_0} is a measure.

b) Counting measure

 $F = P(\Omega), \mu(A) = \text{Cardinality of } A = |A|$

- I. $\mu(A) \ge 0$ for all $A \in F$
- II. $\mu(\phi) = 0$
- III. Consider the following 3 cases and let $\{A_1, A_2, ..., A_j, ...\}$ be a countable set of disjoint elements for $j \in \mathbb{N}$

Case I

Assume that all A_j 's are finite and only finitely many A_j 's are non-empty

$$\sum_{j \in \mathbb{N}} \mu(A_j) = \sum_{j \in \mathbb{N}} \left| A_j \right| = \left| \bigcup_{j \in \mathbb{N}} A_j \right| = \mu\left(\bigcup_{j \in \mathbb{N}} A_j \right)$$

Case II

Assume that the cardinality of at least one A_i is infinite such that $\mu(A_k) = \infty$

$$\mu(\bigcup_{j\in\mathbb{N}}A_k) = \infty = \mu(A_k) + \sum_{j\in\mathbb{N}, j\neq k}\mu(A_j) = \sum_{j\in\mathbb{N}}\mu(A_j)$$

Case III

Assume that infinitely many A_j 's are non-empty. The cardinality of $\bigcup_{j \in \mathbb{N}} A_j$ is

infinite due to A_i 's are disjoint.

$$\mu(\bigcup_{j\in\mathbb{N}}A_k)=\infty=\sum_{j\in\mathbb{N}}\mu(A_j)$$

Therefore, $\mu(A)$ is a measure.

- n total number of communicating channels
- ρ Communicationg rate of each channels
- 3) k number of used channels
 - p the probability of each of the channels fails
 - R a random communicating rate

Suppose $i \in \{1, 2, ..., n\}$ denote a given channel and $\varepsilon_i = 1$ if *i* is active and $\varepsilon_i = 0$ if *i* is failing.

The sample space Ω can be written as,

$$\Omega = \{ (\varepsilon_1, \varepsilon_2, ..., \varepsilon_n); \varepsilon_i \in \{0, 1\} \forall i \}$$

Let A_k denote the event in which the communication rate is ρk ,

$$A_{k} = \{ \omega \in \Omega, \quad \varepsilon_{1} + \varepsilon_{2} + \dots + \varepsilon_{n} = k \}$$

Hence, F : consists of all union of A_k ,

The probability measure P can be formulated as a Binomial distribution such that,

$$P(A_k) = \binom{n}{k} \rho^{n-k} (1-\rho)^k; \ 0 < \rho < 1$$

4) a) The sample space Ω can be written as,

$$\Omega = \{ \omega : \omega = (d_0 d_1 \dots d_7; d_i \in \{0,1\}) \}$$

$$F = P(\Omega) = \text{All the power set} = 2^{\Omega}$$

$$P(A) = \frac{\text{Cardinality of } A}{\text{Cardinality of } \Omega} = \frac{|A|}{256} \text{ for any event } A \in F$$

b) Consider the following events:

$$E_1$$
 = No two neighboring digits are the same
= {01010101, D101010}
 $P(E_1) = \frac{2}{256} = \frac{1}{128}$

 E_2 = Some cyclicshift of the register contains is equal to 01100110

$$P(E_3) = \frac{\binom{8}{4}}{256} = \frac{70}{256} = \frac{35}{128}$$

 E_4 = There is a run of at least 6 consecutive ones

- 5) The sample space Ω can be written as, $\Omega = \{w : w = (w_1, w_2, ...); w_i \in \{H, T\} \forall i\}$ Let E_i be the event i^{th} flip comes up heads $E_i = \{w \in \Omega; w_i = H\}, P(E_i) = p$
 - a) Heads are got for the first time exactly on the nth flip = { X(w) = n } {X = n} = { $w = (\underbrace{T, T, T, ..., H}_{n-1 \text{ times}}, ...)$ } = $E_1^c \cap E_2^c \cap ... \cap E_{n-1}^c \cap E_n$ $P({X = n}) = P(E_1^c \cap E_2^c \cap ... \cap E_n)$ = $P(E_1^c)P(E_2^c)...P(E_{n-1}^c)P(E_n)$ = $(1 - p)^{n-1}p$
 - b) Heads are got for the first time at time 6 or later.

$$\{X \ge 6\} = \{w = (T, T, T, T, T, T, \prod_{\text{can be H or T}}\}$$
$$= E_1^c \cap E_2^c \cap \dots \cap E_5^c$$
$$P(\{X \ge 6\}) = P(E_1^c \cap E_2^c \cap \dots \cap E_5^c)$$
$$= P(E_1^c)P(E_2^c)\dots P(E_5^c)$$
$$= (1-p)^5$$

c) Heads are got for the first time at the least by time $5 = \{X \le 5\}$ $P(\{X \le 5\}) = P(\{X \ge 6\}^c)$

$$= 1 - P(\{X \ge 6\})$$
$$= 1 - (1 - p)^{5}$$