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1 Introduction

Poisson process is a distribution that is used model the time for an arrival into a
system. It can be considered as a continuous version of a binomial process where
as in a binomial process the arrival can only happen in an integer multiple of the
increment step but in poisson process the arrival can happen at any time with
the probability at a single time point is zero. Poisson process can be interpreted
as an arrival process with three alternative definitions

1.1 Arrival Process

An arrival process is a sequence T1, T2, T3, ... which specifies the occurrence
time of the each consecutive arrival where Ti < Ti+1. Equivalently it can also
be defined by the inter arrival time between two times as Ti+1 − Ti. Another
alternative definition can be defined as a counting process with the random
variable being the number of arrivals N(t) that happens in a particular time
t. The counting process definition and the initial arrival time definition can be
related by

{N(t) > n} = {Tn > t} (1.1)

1.2 Definition (Inter Arrival Time)

Lets consider the perspective of inter arrival times where ti = Ti − Ti−1. This
process t1, t2, ... is called a poisson process of the inter arrival times are IID
random variables (renewal process) and they are exponentially distributed. The
pdf if this continuous distribution is given by

P (t = i) = λe−λi (1.2)

λ is called the rate parameter when the poisson process ins considered in a
one dimensional line.

The mean of the distribution is givien by 1
λ and the variance is given by 1

λ2

1.3 Definition (Arrival Time)

If we consider the perspective of an arrival time T1, T2, ..... Here Tn is the
summation of the independent random variables t1],t2,.... Thus the pdf of Tn
can be obtained by convolving the distributions. Thus Erlang density can be
obtained as

P (Tn = t =
λntn−1e−λt

(n− 1)!
(1.3)

See A for further details
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1.4 Definition 3 (Counting Process)

If we consider the definition of a counting process with the average arrival rate
in a unit time the pmf of this discrete distribution is given by

P (N(t) = n) = (λt)n
e−λt

n!
(1.4)

See B for further details.

1.5 Properties

1.5.1 Memoryless

The random variable t is independent of the past. That is

P (t > ti + tj) = P (t > ti) .P (t > tj) (1.5)
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2 Markov Modelling

2.1 Markov Property

The Markov property of the sequence of arrival time T1, T2, ... can be proved by
considering the increment definition. By definition the increments t1, t2, .. such
that ti = Ti − Ti−1 are independent if it’s a poission distribution.

P (Ti − Ti−1 = ki − ki−1|T0 = k0, T1 − T0 = k1 − k0...Ti−1 − Ti−2 = ki−1 − ki−2)
= P (Ti − Ti−1 = ki − ki−1)
= P (Ti = ki|Ti−1 = ki−1) (2.1)

Also given the memory less property using the independent increments prop-
erty p oisson distribution of arrival times T1, T2, ... can be modelled as continuous
time markov chain. That is this can be seen as the process spends time in a
counting state with an exponential distribution and leaves to the next incre-
mental state.

2.2 Markov Formation

A poisson distribution can be formulated as a markov process by considering a
birth process. Where the probability of state transition from n to n+ 1 is 1.

Figure 1: Transition Diagram for Poisson Markov Formation

As in figure

pi,i+1 = 1 (2.2)

pi,i = 0 (2.3)

λi = λ (2.4)

2.2.1 A simple Continuous Markov Chain - Drawing Parallels

A time homogenous markov chain is defined as a markov chain that satisfies
both the properties of time homogeneity and markov property . That is

P
{
X(t) = j | IX(s)

}
= P{X(t) = j | X(s)} (2.5)

P{X(t) = j | X(s)} = P{X(t− s) = j | X(0)} (2.6)
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Here IX(s) denotes all the information of what came before s. If the process
follows these properties then the waiting time Tx for that process in a certain
state x would be exponentially distributed due to the memory less property
which can be implied by both 2.5, 2.6 as follows

P {Tx > s+ t | Tx > s}
= P{X(r) = x for r ∈ [0, s+ t] | X(r) = x for r ∈ [0, s]}
= P{X(r) = x for r ∈ [s, s+ t] | X(r) = x for r ∈ [0, s]}
= P{X(r) = x for r ∈ [s, s+ t] | X(s) = x} (Markov Proptery)
= P{X(r) = x for r ∈ [0, t] | X(0) = x} (Time homogeneity)

(2.7)

Thus an alternate definition for Continuous time homogeneous markov pro-
cess can be derived as a process that satisfies the following

P{X(t+ h) = x | X(t) = x} = 1− λ(x)h+ o(h)
P{X(t+ h) = y | X(t) = x} = λ(x, y)h+ o(h)

(2.8)

Where λ(x, y) denotes the multiplication of transition probability and the
waiting time for a single event following the exponential distribution.

Here we can see both the memory less and homogenity property appears
in both poisson and time homogeneous continuous markov process leading to
the exponential distribution of wating times. Now if we draw a parallel for this
with the poisson distribution it can be shown that the poisson distribution is
the simplest continuous time markov process. Now let’s consider the discrete
transition matrix corresponding to the transition diagram.

p =


0 1 0 0 . . . . .
0 0 1 0
0 0 0 1
. .
. .
. .

 (2.9)

And since we are considering poisson processes with stationary rates in this
the λ(x, y) is a constant λ. Thus the poisson process

P{N(t+ h) = j + 1 | N(t) = j} = λh+ o(h) (2.10)

can be defined as a continuous time markov process by the rate parameter λ
and the transition matrix 2.9.

2.2.2 Generator

A generator is a matrix formed for a continuous markov chain ‘following the
Kolmogorov forward equations. The generator matrix can thus me optained as
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G =


−λ λ 0 0 . . . . .
0 −λ λ 0
0 0 −λ λ
. .
. .
. .

 (2.11)

This completely defines the possion process that’s modelled a time homoge-
neous continuous markov chain.

2.3 Properties

2.3.1 Recurrent/ Transient

The recurrent and transient nature of the continuous Markov chain is same as
that of the embedded discrete markov chain. In this case every state in the
finite state space can reach the states that are greater in value than them selves
but not vice versa. So by definition the all the states in this markov chain are
transient.

2.3.2 Irreducible or reducible

No lets look at the states. There are no communicating states. That is you can
access a state i for j but you cant access the sate i from j for some j ¡ i. Thus
this chain would have countably infinite communication classes namely 1, 2, ...
. Thus thus chain is a reducible chain.

2.3.3 Stationarity

The stationary distribution of continuous markov chain is given by the station-
ary distribution of the embedded discrete markov chain. That is also equivalent
to π.G = 0 where G is the generator matrix. For the generator matrix of
poisson the only possible solution is π = [0, 0, 0.....] which is not a state distri-
bution as the vector don’t sum to 1. Therefore for this process there exists
no stationary distribution .
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3 Applications

3.1 Computer Networks

In computer networks the packet arrival times can be modelled as a poisson
process. Here the packet arrival times αk is treated as the poisson arrival times.
And the packet length Lk is considered as the inter arrival time. That is it is
assumed that the whole transportation medium is used for that packet alone
and used to transmit the packet when the packet arrives.

Another type of modelling follwoing [1] in the random access MAC protocols
in networking. A packet that suffers collision stays in the network and makes
a transmission attempt again until it’s successful. These packets are called the
backlogs. If the no of arriving packets is denoted by Ak and the backlogs of time
k are Bk and the Dk ∈ {0, 1} is the number of departure. Then the backlogs at
time k + 1 can be written as

Bk+1 = Ak +Bk −Dk (3.1)

Here the arrivals Ak at time slot k can be modelled as Poisson process with
rate and if the backlogs attempt retransmission with probability p that can be
considered as discrete time markov process. And a drift d(n) can be defined
as the average change in backlog at a time slot k. Since there can be only one
since there can only be one trasnimssion at a time slot. With no new arirval the
backlog decreases by 1. If exactly 1 arrival happens and one backlog attempts
retrasnmission then the backlog increases by 1. And if m arrivals happens the
backlog increases by m. Then we can formalize the equation as

Pr (Ak −Dk = +1 | Bk = n) = λe−λ (1− (1− r)n)

Pr (Ak −Dk = +m | Bk = n) = λm

m! e
−λ for m ≥ 2

Pr (Ak −Dk = −1 | Bk = n) = e−λnr(1− r)n−1
(3.2)

Thus d(n) can be obtained as

d(n) = λe−λ (1− (1− r)n) +
∑m=2
∞ mλm

m! e
−λ − e−λnr(1− r)n

=
∑m=0
∞ mλm

m! e
−λ − λe−λ(1−r)n−1

= λ− e−λ(1− r)n
(
λ+ nr

1−r

) (3.3)

Thus modelling as a Poisson process gives us a analytical equation for the
change in backlogs.

3.2 Shot Noise

Here following [2] the electrons that arrive at the start of a wire is modelled as a
poisson process with a rate λ. And with the help of the modelling it is possible
to calculate the current in the wire. That is t seconds after the arrival of electron
the current can be obtained as I(t) = e−βt for some /beta > 0.Now if we have
the arrival times of electrons T1, T2....Tn then we can model the expected current

in the wire as X(t) =
∑N(t)
i=1 I (t− Ti). Thus modelling with poisson process

can be used to find the current in the wire.
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A Erlang Distribution

A.1 Derivation

The erlang distribution corresponding to Tk+1 can be obtained by convolution
of the distribution of Tk and the exponential distribution of waiting time t as
follows

fTk+1
(t) =

∫ t

0

λe−λ(t−s) · λke−λt tk−1

(k − 1)!
ds = λk+1e−λt

∫ t

0

sk−1

(k − 1)!
ds

=λk+1e−λt t
k

k!

(A.1)

Similarly the Erlang distribution of T2 can be obtained by the convolution
of two exponential distributions.

A.2 Mean and Variance

The mean can be obtained as

E(T ) = E (T1) + · · ·+ E (Tn) =
n

α
(A.2)

Since the arrival times are independent

Var(T ) = Var (T1) + · · ·+ Var (Tn) =
n

α2
(A.3)

B Counting Process

B.1 Mean and Variance

For the notational ease in this section only consider as the expected number of
arrivals at time interval t. The mean can be derived as

E(X) = λe−λ
∑
t≥1

1

(t− 1)!
λt−1

with j = t− 1

= λe−λ
∑
j≥0

λj

j!

= λe−λeλ

= λ

(B.1)
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The second moment is given as

E
(
X2
)

=
∑
t≥0

t2
1

k!
λte−λ

= λe−λ
∑
t≥1

t
1

(t− 1)!
λt−1

= λe−λ

∑
t≥1

(t− 1)
1

(t− 1)!
λt−1 +

∑
t≥1

1

(t− 1)!
λt−1


= λe−λ

λ∑
t≥2

1

(t− 2)!
λt−2 +

∑
t≥1

1

(t− 1)!
λt−1


with i = t− 1 and j = t− 2

= λe−λ

λ∑
i≥0

1

i!
λi +

∑
j≥0

1

j!
λj


= λe−λ

(
λeλ + eλ

)
= λ(λ+ 1)

= λ2 + λ
(B.2)

The the variance can be given as

var(X) = E
(
X2
)
− (E(X))2

= λ2 + λ− λ2

= λ

(B.3)
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