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1 Introduction

Markov network or undirected graphical model is a countable set of random
variables having a Markov property described by an undirected graph. In other
words, a random field is said to be a Markov random field (MRF) if it satisfies
Markov properties. We will discuss about these Markov in the next section.

A Markov network is similar to a Bayesian network in its representation
of dependencies; the differences being that Bayesian networks are directed and
acyclic, whereas Markov networks are undirected and may be cyclic. Thus, a
Markov network can represent certain dependencies that a Bayesian network
cannot. On the other hand, it can’t represent certain dependencies that a
Bayesian network can (such as induced dependencies). The underlying graph of
a Markov random field may be finite or infinite.

When the joint probability density of the random variables is strictly pos-
itive, it is also referred to as a Gibbs random field, because, it can then be
represented by a Gibbs measure for an appropriate (locally defined) energy
function. The Markov random field was introduced as the general setting for
the Ising model. The prototypical Markov random field is the Ising model. We
will discuss about the Ising model in the applications section. In the domain
of artificial intelligence, a Markov random field is used to model various low to
mid-level tasks in image processing and computer vision.

2 Local Markov properties

Given an undirected graph G = (V,E) , a set of random variables X = (Xs)
s ∈ S indexed by S form a Markov random field with respect to G if they satisfy
the local Markov properties:

1. Pairwise Markov property: Any two non-adjacent variables are condition-
ally independent given all other variables:

Xs ⊥⊥ Xt | XS\{s,t}

2. Local Markov property: A variable is conditionally independent of all
other variables given its neighbors:
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Xs ⊥⊥ XS\∂s∪s | X∂v

where ∂s is the set of neighbors of s.

3. Global Markov property: Any two subsets of variables are conditionally
independent given a separating subset:

XA ⊥⊥ XB | XC

where every path from a node in A to a node in B passes through C.

The Global Markov property is stronger than the Local Markov property,
which in turn is stronger than the Pairwise one. However, the above three
Markov properties are equivalent for a positive probability.

3 Formal definition

A Markov Random Field is a probability distribution P (X = x) of a par-
ticular field configuration x in X. Where X are the set of random variables
X = (Xs)s∈S , defined by an undirected graph G in which nodes correspond to
variables Xs. Because X is a set, the probability of x should be understood to
be taken with respect to a joint distribution of the Xs.

3.1 Factorization by Maximal Clique

We can define the factors in the decomposition of the joint distribution to be
functions of the variables in the cliques (i.e., fully connected subgraphs). Refer
appendix A for more details.

If this joint density can be factorized over the cliques of G:

p(X = x) =
1

Z

∏
c∈C

φc(xc) (1)

then X forms a Markov random field with respect to G where C denotes
the set of cliques of G, and φc are non-negative functions over the variables in a
clique. The functions φc are sometimes referred to as factor potentials or clique
potentials.

The partition function Z given by Eq. (2) is a normalizing constant that
ensures that the distribution sums to one.

Z =
∑
x∈X

∏
c∈C

φc(xc) (2)

Where X denotes the set of all possible assignments of values to all the network’s
random variables. Thus, given a graph G, our probability distribution may
contain factors whose scope is any clique in G, which can be a single node, an
edge, a triangle, etc. Note that we do not need to specify a factor for each
clique. However, we chose not to specify any unary factors, i.e., cliques over
single nodes.
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The reason for using a potential function instead of a probability function
is because in MRFs there does not exist a parent. But in directed graphs, each
factor represents the conditional distribution corresponding to its parents. But
here we do not restrict the choice of potential functions to a specific probabilistic
distribution for flexibility. We can define any potential function as we want.
Note that this is still a probability function. Thus, there are some restrictions
for defining a potential function for a clique. A potential function φc(xc) ≥ 0,
to ensure that p(x) ≥ 0. Therefore it is usually convenient to express them as
exponential as given in Eq. (3).

φc(xc) = exp(−V (xc)) (3)

Where V is called an potential function, and the exponential representation
is called the Boltzmann distribution. Since the joint distribution is defined as
the product of potentials, the total energy is obtained by adding the potentials
of each of the maximal cliques.

p(X = x) =
1

Z

∏
c∈C

φc(xc) =
1

Z

∏
c∈C

exp(−V (xc)) =
1

Z
exp(−

∑
c∈C

V (xc)) (4)

In the next section we will discuss how MRFs are applied in image processing,
and how Markov properties are applicable

4 Discrete State Markov Random Fields

4.1 Definition of Neighborhood system

Before we can define an MRF, we must first define the concept of a neighborhood
system. Let S be a set of lattice points with elements s ∈ S. Then we use the
notation ∂s to denote the neighbors of s. Notice that ∂s is a subset of S, so
the function ∂ is a mapping from S to power set of S, or equivalently the set
of all subsets of S denoted by 2S . However, not any mapping ∂s qualifies as
a neighborhood system. In order for ∂s to be a neighborhood system, it must
meet the following constraints.

r ∈ ∂s→ s ∈ ∂r (5)

Simply, for all s, r ∈ S if r is a neighbor of s, then s must be a neighbor of
r. Notice that this definition is not restricted to a regular lattice. However, if
the lattice S is a regular lattice, and the neighborhood is spatially invariant,
then symmetry constraint necessitates that the neighbors of a point must be
symmetrically distributed about each pixel. Also, we define clique as a set of
points, c, which are all neighbors of each other.

∀s, r ∈ c, r ∈ ∂s (6)
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Figure 1: An eight point a) neighborhood system, and b) its associated cliques.

An example of 8 point neighborhood is illustrated in Fig. 1. When modeling
images as a MRF, each state (pixel) is accessible from other pixels. Therefore
MRF is irreducible. Also since the model is undirected states are periodic.

4.2 Discrete(Continuous) Markov Random Field

Let Xs ∈ Ω be a discrete(continuous) valued random field defined on the lattice
S with neighborhood system ∂s. Further assume that the X has probability
mass(density) function p(x). Then we say that X is a Markov random field
(MRF) if its density function has the property that for all x ∈ Ω and r 6=
s, p(xs|xr) = p(xs|x∂r). Notice that each pixel on is only dependent on its
neighbors.

A limitation of MRFs is that their definition does not yield a natural method
for writing down the MRF’s distribution. For this purpose, we will need to
introduce the Gibbs distribution.

4.3 Discrete (Continuous) Gibbs Distribution

Let p(x) be the probability mass(density) function of a discrete(continuous)
valued random field Xs ∈ Ω defined on the lattice S with neighborhood system
∂s. Then we say that p(x) is a Gibbs distribution if it can be written in the
form p(x) = 1

Z exp(−
∑

c∈C V (xc)). Where C is the set of all cliques, Z is the
partition function, and Vc(xc) are any functions, of xc.

4.4 Hammersley-Clifiord Theorem

The important result that relates MRFs and Gibbs distributions is the Hammersley-
Clifiord Theorem stated below.
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Figure 2: Markov Chain

LetX be a discrete(continuously) valued MRF, and let p(x) be its probability
mass(density) function each with lattice S and neighborhood system ∂s. Then
X is an MRF if and only if p(x) is a Gibbs distribution.

5 Examples of MRFs

5.1 1-D MRF

1D MRFs are necessarily Markov Chains. Let’s look at Markov chain illustrated
in Fig. 2. The neighbours of n are ∂n = {n− 1, n+ 1} and the cliques have the
form {n− 1, n}. The density function can be formulated as,

p(x) = p(x0)
N∏

n=1

p(xn|xn−1) = p(x0) exp(
N∑

n=1

log(p(xn|xn−1))) (7)

Where we can define an potential function as V (xn, xn−1) = log p(xn|xn−1).
Now in a 1D MRF defined by Xn with ∂n = {n− 1, n+ 1}, the discrete density
has the form of a Gibbs distribution as follows,

p(x) = p(x0) exp{
N∑

n=1

V (xn, xn−1)} (8)

Therefore, we can see that 1D MRFs are Markov chains.

5.2 2D MRF

There are many models proposed in 2D domain. The conditional probability of
a pixel xs in Fig. 3 can be given by Eq. (9).

p(xs|xi6=s) =
1
Z exp(−

∑
c∈C Vc(xc))∑M−1

xs=0
1
Z exp(−

∑
c∈C Vc(xc))

(9)

5.2.1 Ising model

The Ising model is an example of an MRF that arose from statistical physics.
It was originally used for modeling the behavior of magnets. In particular, let
xs = {−1,+1} represent the spin of an atom, which can either be spin down or
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Figure 3: Neighboring pixels of xs

up. In some magnets, called ferro-magnets, neighboring spins tend to line up in
the same direction, whereas in other kinds of magnets, called anti-ferromagnets,
the spins “want” to be different from their neighbors.

We can model this as an MRF as follows. We create a graph in the form
of a 2D or 3D lattice, and connect neighboring variables. We then define the
following pairwise clique potential:

V (xx, xt) =

(
ewst e−wst

e−wst ewst

)
(10)

Here wst is the coupling strength between nodes s and t. If two nodes
are not connected in the graph, we set wst = 0. We assume that the weight
matrix W is symmetric, so wst = wts. Often we assume all edges have the
same strength, so wst = J (assuming wst 6= 0). If all the weights are positive,
J > 0, then neighboring spins are likely to be in the same state. If the weights
are sufficiently strong, the corresponding probability distribution will have two
modes, corresponding to the all +1’s state and the all -1’s state. These are
called the ground states of the system. Interestingly, computing the partition
function Z(J) can be done in polynomial time for associative Markov networks,
but is NP-hard in general.

There is an interesting analogy between Ising models and Gaussian graphical
models. First, assuming xt = {−1,+1}, we can write the unnormalized log
probability of an Ising model as follows:

log p(x) = −
∑
s t

xswstxt = −1

2
xTWx (11)

The factor of 1/2 arises because we sum each edge twice. If wst = J > 0, we
get a low energy (and hence high probability) if neighboring states agree.

Sometimes there is an external field, which is an energy term which is added
to each spin. This can be modelled using a local energy term of the form −bTy,
where b is sometimes called a bias term. The modified distribution is given by:

log p(x) = −
∑
s t

wstxsxt +
∑
s

bsxs = −1

2
xTWx + bTy (12)
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Figure 4: Ising model

If we define Σ−1 = W , µ = Σb , and c = 1
2µ

T Σ−1, we can rewrite this in a
form that looks similar to a Gaussian:

p(x) ∝ exp(−1

2
(y − µ)TΣ−1(y − µ) + c (13)

One very important difference is that, in the case of Gaussians, the normal-
ization constant, Z = |2πΣ|, requires the computation of a matrix determinant,
which can be computed in O(D3) time, whereas in the case of the Ising model,
the normalization constant requires summing over all 2D bit vectors; this is
equivalent to computing the matrix permanent, which is NP-hard in general.

5.2.2 Sampling from the model

Gibbs Sampling can be used to draw samples from this distribution as follows:
given a sample x, produce a candidate new sample x′ by flipping a single variable
(x′i = −xi). Next, compute the acceptance probability:

α(x′|x) = min(1,
p(x′)

p(x)
)

and let the next sample be x′ with probability α(x′|x), or repeat x otherwise.
Clearly, if p(x′) > p(x), the state will transition to x′ with certainty. However,
if p(x′) < p(x), the sample will only be accepted with some probability that is
based on how much worse it is. The Gibbs sampling process is illustrated on
the Fig. 5, where the potential strengths J, b can be manipulated. When J > 0,
the low energy states are smooth regions, as this minimizes the number of edges
that connect nodes of different values. When J is negative, the reverse happens
as the model assigns higher probabilities to states with many crossing edges.
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Figure 5: Gibbs sampling of Ising model.
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Figure 6: Segmentation model

6 Applications

Some of the applications of MRFs are:

1. Segmentation

2. Semantic labeling

3. Stereo matching

4. Depth estimation

5. De-noising

6. Super resolution

7. Pose estimation

For this section we will consider Bayesian Segmentation Model. Here we use
a discrete MRF to model the segmentation field. Each class is represented by a
value Xs = {1, ...,M − 1}. The joint probability of the data and segmentation
is P{Y ∈ dy,X = x} = p(y|x)p(x) where p(y|x) is the data model and p(x) is
the segmentation field.

For estimating the segmentation lets use the Bayes Theorem. Let C(x,X)
be the cost of guessing x when X is the correct answer. Let X̂ be the estimated
value of X. Then E[C(X̂,X)] is the expected cost(risk). Our objective is to
choose the estimator x̂ that minimizes E[C(X̂,X)].

Let C(x,X) = –δ(x 6= X). Then the optimum estimator is given by maxi-
mum a posterior (MAP) estimation:

X̂MAP = arg max
x

px|y(x|Y )

= arg max
x

log
py,x(Y, x)

py(X)

= arg max
x
{log py,x(Y, x) + log py(X)}

(14)

Advantage of using MAP is the we an compute through direct optimization.
But, the cost function is unreasonable for many applications.
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Figure 7: a) Synthetic image with 3 textures b) Iterated Conditional Modes -
29 iterations c) Simulated Annealing - 100 iterations d) Multiresolution - 7.8
iterations

Assume the data model py|x(y|x) =
∏

s∈S p(ys|xs) and the prior model

(Ising model) py(x) = 1
Z′ exp(−βt1(x)). Then the MAP estimate has the form

X̂MAP = arg minx{− log py|x(y|x) + βt1(x)}. Then using an optimization tech-
nique we can find the segmentation of the image. Some of the results are illus-
trated in Fig. 7

Appendices

A Cliques

As the Markov property of an arbitrary probability distribution can be difficult
to establish, a commonly used class of Markov random fields are those that can
be factorized according to the cliques of the graph. A subset of nodes in a graph
G is a clique if,

• There exists a link between all pairs of nodes in the subset.

• The set of nodes in a clique is fully connected.

A maximal clique is a clique that is not possible to include any other nodes
from the graph to the set without it ceasing to be a clique. This is illustrated
in the Fig. 8.

In the example given in Fig. 8, has five cliques of two nodes {x1, x2}, {x2, x3},
{x3, x4}, {x4, x2}, {x1, x3}. It has two maximal cliques {x1, x2, x3}, {x2, x3, x4}.
The set {x1, x2, x3, x4} is not a clique because of the missing link from x1 to x4.
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Figure 8: Difference between a clique and a maximal clique.

B Pseudo code: Gibbs sampling of Ising model

Listing 1: Pseudo code

// naive g ibbs sampler f o r the i s i n g model
x = randomState ( )
whi l e t rue :
// c a l c u l a t e p r o b a b i l i t y o f t h i s s t a t e and a proposa l
px = p( x ) // p i s the un−normal ized p r o b a b i l i t y as de f ined above
xnew = f l ipOneBi t ( x )
pnew = p(xnew)

// c a l c u l a t e t r a n s i t i o n p r o b a b i l i t y alpha
t r a n s i t i o n P r o b a b i l i t y = min (1 , pnew/px )
i f uniformRandom (0 , 1 ) < t r a n s i t i o n P r o b a b i l i t y :
x = xnew // t r a n s i t i o n to x ’ !

C Python code: Image segmentation using MRF

# Image segmentat ion us ing MRF model
from PIL import Image
import numpy
from pylab import ∗
from sc ipy . c l u s t e r . vq import ∗
from sc ipy . s i g n a l import ∗
import cv2
import s c ipy

de f main ( ) :
# Read in image
im=Image . open ( ’ 7 . png ’ )
im=numpy . array ( im)

# I f g r a y s c a l e add one dimension f o r easy p r o c e s s i n g
i f ( im . ndim==2):
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im=im [ : , : , newaxis ]

# I n i t i a l kmean segmentat ion
n l e v e l s=4
l ev=get in i tkmean ( im , n l e v e l s )

# MRF ICM
win dim=256
whi le ( win dim>7):

p r i n t ( win dim )
locav=l o c a l a v e r a g e ( im , lev , n l e v e l s , win dim )
l ev=MRF( im , lev , locav , n l e v e l s )
win dim=win dim //2

t i t l e ( ’ Level ’ )
imshow ( l ev ∗20)

# Get the c o l o r average based on locav
out=ACAreconstruction ( lev , l ocav )
f i g u r e ( )
t i t l e ( ’ Seg Image ’ )
imshow ( out )
show ( )

de f ACAreconstruction ( lev , l ocav ) :
out=0
f o r i in range ( locav . shape [ 3 ] ) :
mask=( l ev==i )
out+=mask [ : , : , newaxis ]∗ l o cav [ : , : , : , i ]

r e turn out

de f get in i tkmean ( im , n l e v e l s ) :
obs=reshape ( im , ( im . shape [ 0 ] ∗ im . shape [1 ] , −1) )
obs=whiten ( obs )

( c ent ro id s , l e v )=kmeans2 ( obs , n l e v e l s )
l e v=l ev . reshape ( im . shape [ 0 ] , im . shape [ 1 ] )
r e turn l ev

de f d e l t a ( a , b ) :
i f ( a==b ) :
re turn −1

e l s e :
r e turn 1

de f MRF( obs , lev , locav , n l e v e l s ) :
(M,N)=obs . shape [ 0 : 2 ]
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f o r i in range (M) :
f o r j in range (N) :
# Find segmentat ion l e v e l which has min energy ( h i ghe s t p o s t e r i o r )
co s t =[ energy (k , i , j , obs , lev , l ocav ) f o r k in range ( n l e v e l s ) ]
l e v [ i , j ]= co s t . index ( min ( co s t ) )

re turn l ev

de f energy ( p ix l ev , i , j , obs , lev , l ocav ) :
beta =0.5
std=7
c l=c l i q u e ( p i x l ev , i , j , l e v )
c l o s e n e s s=numpy . l i n a l g . norm( locav [ i , j , : , p i x l e v ]−obs [ i , j , : ] )
r e turn beta ∗ c l+c l o s e n e s s / std ∗∗2

de f l o c a l a v e r a g e ( obs , lev , n l e v e l s , win dim ) :
# Use c o r r e l a t i o n to perform averag ing
mask=numpy . ones ( ( win dim , win dim ))/ win dim ∗∗2

# 4d array (512 , 512 , nco lo r s , n l e v e l s )
l ocav=ones ( ( obs . shape+( n l e v e l s , ) ) )

f o r i in range ( obs . shape [ 2 ] ) : # loop through image channe l s
f o r j in range ( n l e v e l s ) : # loop through segmentat ion l e v e l s
temp=(obs [ : , : , i ] ∗ ( l e v==j ) )
locav [ : , : , i , j ]= f f t c o n v o l v e ( temp , mask , mode=’same ’ )

re turn locav

de f c l i q u e ( p i x l ev , i , j , l e v ) :
(M,N)= l ev . shape [ 0 : 2 ]

#f i n d c o r r e c t ne ighbors
i f ( i==0 and j ==0):
ne ighbor =[ (0 ,1 ) , ( 1 , 0 ) ]

e l i f i==0 and j==N−1:
ne ighbor =[(0 ,N−2) , (1 ,N−1)]

e l i f i==M−1 and j ==0:
ne ighbor =[(M−1 ,1) , (M−2 ,0) ]

e l i f i==M−1 and j==N−1:
ne ighbor =[(M−1,N−2) , (M−2,N−1)]

e l i f i ==0:
ne ighbor =[(0 , j −1) , (0 , j +1) , (1 , j ) ]

e l i f i==M−1:
ne ighbor =[(M−1, j −1) , (M−1, j +1) , (M−2, j ) ]

e l i f j ==0:
ne ighbor =[( i −1 ,0) , ( i +1 ,0) , ( i , 1 ) ]

e l i f j==N−1:
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neighbor =[( i −1,N−1) , ( i +1,N−1) , ( i ,N−2)]
e l s e :
ne ighbor =[( i −1, j ) , ( i +1, j ) , ( i , j −1) , ( i , j +1) ,\

( i −1, j −1) , ( i −1, j +1) , ( i +1, j −1) , ( i +1, j +1)]

r e turn sum( d e l t a ( p ix l ev , l e v [ i ] ) f o r i in ne ighbor )

i f name ==” main ” :
main ( )
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