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Transform Methods in Stochastic Theory

• We saw in a previous lecture, to provide different statistical properties 
of the process and different amounts of information concerning the 
process, we need to calculate various types of characterizations.

• Some types of such characterizations are mean, variance, moments, 
the nth-order distributions, autocorrelation function, and spectral 
density etc.

• In stochastic theory we are dealing with an infinite family of random 
variables. 

• Therefore to perform such operations in standard ways will sometimes 
be possible but, in many situations it will be very tedious or sometimes 
impossible.
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Transform Methods in Stochastic Theory

For example: 

• Suppose we have independent random variables                     each 
has a Poisson distribution with parameter                          

• Suppose we need to find the distribution of the sum                                     
In this case we can use mathematical induction to show that  the sum                       
has Poisson distribution with parameter                                                                                             

• In the above we found a ‘natural’ way to manipulate the algebra so that 
we  could recognize the answer. 

• What would happen if we considered other sums of random variables? 
Will it be possible to come up with a mathematical tool as above?

• It is nice if we have a procedure that will work in general.

X1, X2, Xn, ⋯
λi, i = 1,2,⋯ .

X1 + ⋯ + Xn .

λ1 + ⋯ + λn .
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Transform Methods in Stochastic Theory

• Such an approach exists and it is called the theory of generating 
functions or transform methods. 


• Some important transform methods are:


1. Moment Generating Function


2. Laplace Transform


3. Characteristic Function


• Depending on your field of study, you can use the type that will be 
more effective than the others. 


• Here we will study about these generating functions and their 
relationships. 
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Transform Methods in Stochastic Theory
Moment generating function(MGF) 

• For           the moment generating function of a random variable       is 
defined as 


where where          are the probability density or mass function 
respectively.


• The above is an infinite series or integral. Therefore we need to see 
whether it exists(finite).


• For example it is clear from the definition that for the integral to 
exist, the right tail of the density has to go to zero faster than      .          


• This is not the case for fat-tailed distributions. 

Xt ∈ ℝ,

MX(t) = E(etX) =
∑∞

k=−∞ etxkP(Xk) discrete random variable

∫ ∞
−∞

etxfX(x)dx continuous random variable

fX, P

e−x
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Transform Methods in Stochastic Theory

Laplace Transform 

• Recall the Laplace transform of a function is defined as


• Thus if we flip the sign on t in the definition of         ,we have 
the two-sided Laplace transform of     .  


• That is, the moment generating function of     at     is the 
two-sided Laplace transform of        at      . 


• Thus if the density function is zero for negative values, then 
the two-sided Laplace transform reduces to the more 
common (one-sided) Laplace transform.

F(t) = ℒ( f(x)) = ∫
∞

0
e−txf(x)dx .

MX(t)
fX

X t
−tfX
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Transform Methods in Stochastic Theory

Characteristic Function 

• The characteristic function of a random variable is a variation on 
the moment generating function. 


• Rather than using the expected value of      , it uses the expected 
value of       . 


• This means the characteristic function of a random variable is 
the Fourier transform of its density/mass function.


• Characteristic functions are easier to work with than moment 
generating functions.


• Existence is not a problem for the characteristic function because 
the Fourier transform exists for any density/mass function.

tX
itX
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Transform Methods in Stochastic Theory
Characteristic Function 

• For     a random variable and           the characteristic 
function is defined as 


• Thus the characteristic function is the most general form 
of the transforms.


• Therefore we will study only about the characteristic 
function and all the results are appropriately applicable for 
other transforms.

X

ψX(t) = E(eitX) =
∑∞

k=−∞ eitxkP(Xk) discrete random variable

∫ ∞
−∞

eitxfX(x)dx continuous random variable
.

t ∈ ℝ
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Transform Methods in Stochastic Theory

Characteristic Function 

• Using Euler formula,                                   


• The above  gives  the expectation of the complex random 
variable        in terms of expectations of two real random 
variables. 


• Since 


• This is a transformation that transforms probability 
density function or probability mass function to a complex 
function.


       

E(eitx) = E(cos tx) + iE(sin tx) .

eitX

|eitX | = 1, E( |eitx | ) = E( |eitx |2 ) = 1.
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Transform Methods in Stochastic Theory

Characteristic Function 


• Uniqueness:  If two random variables                  have the 
same characteristic functions, then they have the same 
distribution functions. 


i.e if                                  then                             This is 
written as          


• There are several additional properties that follow 
immediately from the definition of the characteristic function.         


                                 

X1 and X2

ψX1
(t) = ψX2

(t) ∀t ∈ ℝ, FX1
= FX2

∀x ∈ ℝ .

X1
d= X2 .
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Transform Methods in Stochastic Theory
Characteristic Function 

• Properties:


1. Characteristic function        exists  for any random variable. 


2. At                          and


3. Characteristic function           is uniformly continuous.


4. Characteristic function of             for        constants is 


5. Characteristic function  of         is the complex conjugate                                                                   


   

ψX(t)

t = 0,ψX(0) = 1 |ψX(t) | ≤ 1.

ψX(t)

a + bX a, b

ψa+bX = eiatψX(bt) .

−X
−ψX(t) .
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Transform Methods in Stochastic Theory

Characteristic Function 

• Properties:


6. Characteristic function       is real valued iff                        
i.e the distribution is symmetric about zero.


7. For any complex numbers,                     and  for any 
real                     we have


i.e. the characteristic function is positive semidefinite.

ψX(t) X d= − X .

zl; l = 1,2,⋯, n
tl; l = 1,2,⋯, n

n

∑
l=1

n

∑
k=1

zl
−zkψX(tl − tk) ≥ 0.
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Transform Methods in Stochastic Theory

Characteristic Function 

Examples: 


1.Standard Normal Distribution, 


 


Differentiating w.r.t the parameter t and allowing to move 
differentiation inside the integral sign, we get


 


 By integration by parts we get


        

X ∈ N(0,1) .

ψX(t) = ∫
∞

−∞
eitx 1

2π
ex2/2dx .

ψX(t)′� =
dψX(t)

dt
= ∫

∞

−∞

d
dt

eitx 1

2π
ex2/2dx = ∫

∞

−∞
ixeitx 1

2π
ex2/2dx = ∫

∞

−∞
− ieitx 1

2π
(−xex2/2)dx .

ψX(t)′� = − ieitx 1

2π
ex2/2 |∞

−∞ − ∫
∞

−∞ (−ti2eitx 1

2π
ex2/2) dx = 0 − tψX(t) .
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Transform Methods in Stochastic Theory

Characteristic Function  

This results in the first order linear ordinary differential 
equation


Using the integrating factor we get 


Since               we have                      


Thus we have obtained


Note: Since this is real valued, therefore by the properties 
of the characteristic function we get  


        

ψX(t) = Ce−t2/2 .

ψ′ �X(t) + tψX(t) = 0.

ψX(0) = 1 ψX(t) = e−t2/2 .

−X ∈ N(0,1) .

X ∈ N(0,1) ⇔ ψX(t) = e−t2/2 .
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Transform Methods in Stochastic Theory

Characteristic Function 

2. Poisson Distribution,


 


Thus we have obtained

X ∈ Po(λ), λ > 0.

ψX(t) =
∞

∑
k=o

eitke−λ λk

k!
= e−λ

∞

∑
k=o

(eitλ)k

k!
= e−λeeitλ = e(eit−1)λ .

X ∈ Po(λ) ⇔ ψX(t) = e(eit−1)λ .
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Transform Methods in Stochastic Theory

Characteristic Functions and Moments of Random Variables


• If the random variable       has                         then 


This can be proved  changing the order of differentiation and expectation,


dk

dtk
ψX(t) |t=0 =

dk

dtk
ψX(0) = ikE(XK) .

X E( |X |K ) < ∞,

d
dt

ψX(t) = E[
d
dt

eitX] = E[iXeitX]

d
dt

ψX(0) = iE[iXeitX] .
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Transform Methods in Stochastic Theory

Characteristic Functions and Moments of Random 
Variables 

Example: Mean and Variance of the Poisson Distribution


Thus 


ψX(t) = e(eit−1)λ

dψX(t)
dt

= e(eit−1)λiλeit

d2ψX(t)
dt2

= e(eit−1)λi2λ2e2it + e(eit−1)λi2λeit .

E(X) =
1
i

d
dt

ψX(0) = λ

Var(X) = E(X2) − (E(X))2 =
1
i2

d2

dt2
ψX(0) − λ2 = λ2 + λ − λ2 = λ .
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Transform Methods in Stochastic Theory
Characteristic Functions of Sums of Independent 
Random Variables  

• Suppose              are independent random variables with 
respective characteristic functions                           


• Then the characteristic function of their sum               is 
given by  


• Thus if                 iid random variables with characteristic 
function        then 

ψSn
(t) = ψX1

(t)⋯ψXn
(t) .

ψSn
(t) = (ψX(t))n .

X1, ⋯, Xn
ψXk

(t), k = 1,2,⋯, n .

Sn =
n

∑
k=1

Xk

X1, ⋯, Xn
ψX(t)
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Transform Methods in Stochastic Theory
Central Limit Theorem 

• Suppose                 is an infinite sequence of iid random variables with                                                


• Standardize each random variable by subtracting the common mean and 
then dividing the difference by the common standard deviation, 


• Then       are iid with                              


• Now define        by adding  the first n of the        and scale the sum by 
the factor         so that, 

     

Yk =
Xk − μ

σ
.

E(Xk) = μ, Var(Xk) = σ2; k = 1,⋯ .

X1, X2, ⋯

Y′�ks E(Yk) = 0, Var(Yk) = 1.

Y′�ks1

n Wn =
1

n

n

∑
k=1

Yk =
n

∑
k=1

Yk

n
.

Wn
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Transform Methods in Stochastic Theory

Central Limit Theorem 

• Note: A useful result:

If                    for some n then 

• Next we will compute the characteristic function of     .

• Now expanding             as given in the above note along  
with                               we get, 

E( |X |n ) < ∞,
ψX(t) = 1 +

n

∑
k=1

E(Xk)
(it)k

k!
+ o( | t |n ) .

Wn

ψWn
(t) = (ψY/ n(t))n, ∵ Y′�ks iid

= (ψY(t/ n))n, ∵ ψY/ n(t) = ψY(t/ n)

ψY(t/ n)
E(Yk) = 0,Var(Yk) = 1

ψY(t/ n) = 1 −
t2

2n
+ o(t2/n) .
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Transform Methods in Stochastic Theory

Central Limit Theorem 

• Thus  the characteristic function of      is given by     

• Now we will see what happens when             Taking the 
limit,


• Thus we  observe that the characteristic function of      
converges for all t to the characteristic function of          
Thus 


• This is central limit theorem.       

Wn

ψWn
(t) = (1 −

t2

2n
+ o(t2/n))n .

lim
n→∞

ψWn
(t) = e−t2/2 .

N(0,1) .
Wn

Wn ∈ N(0,1) .

n → ∞ .
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Exercises

1. Prove the property, if the characteristic function of         
is       then the characteristic function of               
constants is 


2. In the notes we obtained the characteristic function of a 
random variable              . Using this and the property 
given in question 1 above, show that the characteristic 
function of                is           


3. If    has Bernoulli distribution with probability of success             
then show that the characteristic function of    is given 
by  

Z ∈ N(0,1)

X ∈ N(μ, σ2) ψX(t) = eiμt−σ2t2/2 .

X
ψX(t) = (1 − p) + eitp .

X

a + bX, a, b
X

ψX(t)
ψa+bX = eiatψX(bt) .

p
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Exercises

4. Suppose                     are independent random variables 
and  each                                  Then show that for any 
constants                   by using characteristic functions 


                         


      Deduce that if                    are iid and             then  

 

 
 

X1, X2, ⋯, Xn
Xk ∈ N(μk, σ2

k ); k = 1,2,⋯, n .
a1, a2, ⋯, an

Sn =
n

∑
k=1

akXk ∈ N (
n

∑
k=1

akμk,
n

∑
k=1

a2
k σ2

k ) .

X1, X2, ⋯, Xn N(μ, σ2)

X̄ =
1
n

n

∑
k=1

Xk ∈ N (μ,
σ2

n ) .
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