# EM 509: Stochastic Processes

**Class Notes** 

Transform Methods in Stochastic Theory

(Lecture 5)

Dr. R. Palamakumbura

- We saw in a previous lecture, to provide different statistical properties of the process and different amounts of information concerning the process, we need to calculate various types of characterizations.
- Some types of such characterizations are mean, variance, moments, the nth-order distributions, autocorrelation function, and spectral density etc.
- In stochastic theory we are dealing with an infinite family of random variables.
- Therefore to perform such operations in standard ways will sometimes be possible but, in many situations it will be very tedious or sometimes impossible.

#### For example:

- Suppose we have independent random variables  $X_1, X_2, X_n, \cdots$  each has a Poisson distribution with parameter  $\lambda_i, i = 1, 2, \cdots$ .
- Suppose we need to find the distribution of the sum  $X_1 + \cdots + X_n$ . In this case we can use mathematical induction to show that the sum has Poisson distribution with parameter  $\lambda_1 + \cdots + \lambda_n$ .
- In the above we found a 'natural' way to manipulate the algebra so that we could recognize the answer.
- What would happen if we considered other sums of random variables?
   Will it be possible to come up with a mathematical tool as above?
- It is nice if we have a procedure that will work in general.

- Such an approach exists and it is called the theory of generating functions or transform methods.
- Some important transform methods are:
  - 1. Moment Generating Function
  - 2. Laplace Transform
  - 3. Characteristic Function
- Depending on your field of study, you can use the type that will be more effective than the others.
- Here we will study about these generating functions and their relationships.

### Moment generating function(MGF)

• For  $t \in \mathbb{R}$ , the moment generating function of a random variable X is defined as

$$M_X(t) = E(e^{tX}) = \begin{cases} \sum_{k=-\infty}^{\infty} e^{tx_k} P(X_k) & \text{discrete random variable} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx & \text{continuous random variable} \end{cases}$$

where where  $f_X$ , P are the probability density or mass function respectively.

- The above is an infinite series or integral. Therefore we need to see whether it exists(finite).
- For example it is clear from the definition that for the integral to exist, the right tail of the density has to go to zero faster than  $e^{-x}$ .
- This is not the case for fat-tailed distributions.

### Laplace Transform

Recall the Laplace transform of a function is defined as

$$F(t) = \mathcal{L}(f(x)) = \int_0^\infty e^{-tx} f(x) dx.$$

- Thus if we flip the sign on t in the definition of  $M_X(t)$ , we have the **two-sided Laplace transform** of  $f_X$ .
- That is, the moment generating function of X at t is the two-sided Laplace transform of  $f_X$  at -t.
- Thus if the density function is zero for negative values, then the two-sided Laplace transform reduces to the more common (one-sided) Laplace transform.

#### Characteristic Function

- The characteristic function of a random variable is a variation on the moment generating function.
- Rather than using the expected value of tX, it uses the expected value of itX.
- This means the characteristic function of a random variable is the Fourier transform of its density/mass function.
- Characteristic functions are easier to work with than moment generating functions.
- Existence is not a problem for the characteristic function because the Fourier transform exists for any density/mass function.

### Characteristic Function

• For X a random variable and  $t \in \mathbb{R}$  the characteristic function is defined as

$$\psi_X(t) = E(e^{itX}) = \begin{cases} \sum_{k=-\infty}^{\infty} e^{itx_k} P(X_k) & \text{discrete random variable} \\ \int_{-\infty}^{\infty} e^{itx} f_X(x) dx & \text{continuous random variable} \end{cases}.$$

- Thus the characteristic function is the most general form of the transforms.
- Therefore we will study only about the characteristic function and all the results are appropriately applicable for other transforms.

### Characteristic Function

- Using Euler formula,  $E(e^{itx}) = E(\cos tx) + iE(\sin tx)$ .
- The above gives the expectation of the complex random variable  $e^{itX}$  in terms of expectations of two real random variables.
- Since  $|e^{itX}| = 1$ ,  $E(|e^{itx}|) = E(|e^{itx}|^2) = 1$ .
- This is a transformation that transforms probability density function or probability mass function to a complex function.

#### Characteristic Function

• Uniqueness: If two random variables  $X_1$  and  $X_2$  have the same characteristic functions, then they have the same distribution functions.

i.e if 
$$\psi_{X_1}(t) = \psi_{X_2}(t) \ \forall t \in \mathbb{R}$$
, then  $F_{X_1} = F_{X_2} \ \forall x \in \mathbb{R}$ . This is written as  $X_1 \stackrel{d}{=} X_2$ .

 There are several additional properties that follow immediately from the definition of the characteristic function.

#### Characteristic Function

- Properties:
  - 1. Characteristic function  $\psi_X(t)$  exists for any random variable.
  - 2. At  $t = 0, \psi_X(0) = 1$  and  $|\psi_X(t)| \le 1$ .
  - 3. Characteristic function  $\psi_X(t)$  is uniformly continuous.
  - 4. Characteristic function of a + bX for a, b constants is

$$\psi_{a+bX} = e^{iat} \psi_X(bt) .$$

5. Characteristic function of -X is the complex conjugate  $\bar{\psi}_X(t)$ .

- Characteristic Function
- Properties:
  - 6. Characteristic function  $\psi_X(t)$  is real valued iff  $X \stackrel{d}{=} X$ . i.e the distribution is symmetric about zero.
  - 7. For any complex numbers,  $z_l$ ;  $l = 1,2,\dots,n$  and for any real  $t_l$ ;  $l = 1,2,\dots,n$  we have

$$\sum_{l=1}^{n} \sum_{k=1}^{n} \bar{z_l} \bar{z_k} \psi_X(t_l - t_k) \ge 0.$$

i.e. the characteristic function is positive semidefinite.

#### Characteristic Function

### **Examples:**

1.Standard Normal Distribution,  $X \in N(0,1)$ .

$$\psi_X(t) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{\sqrt{2\pi}} e^{x^2/2} dx.$$

Differentiating w.r.t the parameter t and allowing to move differentiation inside the integral sign, we get

$$\psi_{X}(t)' = \frac{d\psi_{X}(t)}{dt} = \int_{-\infty}^{\infty} \frac{d}{dt} e^{itx} \frac{1}{\sqrt{2\pi}} e^{x^{2}/2} dx = \int_{-\infty}^{\infty} ixe^{itx} \frac{1}{\sqrt{2\pi}} e^{x^{2}/2} dx = \int_{-\infty}^{\infty} -ie^{itx} \frac{1}{\sqrt{2\pi}} (-xe^{x^{2}/2}) dx.$$

By integration by parts we get

$$\psi_X(t)' = -ie^{itx} \frac{1}{\sqrt{2\pi}} e^{x^2/2} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \left( -ti^2 e^{itx} \frac{1}{\sqrt{2\pi}} e^{x^2/2} \right) dx = 0 - t\psi_X(t).$$

### Characteristic Function

This results in the first order linear ordinary differential equation  $\psi'_X(t) + t\psi_X(t) = 0.$ 

Using the integrating factor we get  $\psi_X(t) = Ce^{-t^2/2}$ .

Since  $\psi_X(0) = 1$  we have  $\psi_X(t) = e^{-t^2/2}$ .

Thus we have obtained  $X \in N(0,1) \Leftrightarrow \psi_X(t) = e^{-t^2/2}$ .

Note: Since this is real valued, therefore by the properties of the characteristic function we get  $-X \in N(0,1)$ .

### Characteristic Function

2. Poisson Distribution,  $X \in Po(\lambda)$ ,  $\lambda > 0$ .

$$\psi_{X}(t) = \sum_{k=0}^{\infty} e^{itk} e^{-\lambda} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(e^{it}\lambda)^{k}}{k!} = e^{-\lambda} e^{e^{it}\lambda} = e^{(e^{it}-1)\lambda}.$$

Thus we have obtained

$$X \in Po(\lambda) \Leftrightarrow \psi_X(t) = e^{(e^{it}-1)\lambda}$$

- Characteristic Functions and Moments of Random Variables
- If the random variable X has  $E(|X|^K) < \infty$ , then

$$\frac{d^k}{dt^k}\psi_X(t)\big|_{t=0} = \frac{d^k}{dt^k}\psi_X(0) = i^k E(X^K).$$

This can be proved changing the order of differentiation and expectation,

$$\frac{d}{dt}\psi_X(t) = E\left[\frac{d}{dt}e^{itX}\right] = E\left[iXe^{itX}\right]$$
$$\frac{d}{dt}\psi_X(0) = iE\left[iXe^{itX}\right].$$

### Characteristic Functions and Moments of Random Variables

Example: Mean and Variance of the Poisson Distribution

$$\psi_X(t) = e^{(e^{it}-1)\lambda}$$

$$\frac{d\psi_X(t)}{dt} = e^{(e^{it}-1)\lambda}i\lambda e^{it}$$

$$\frac{d^2\psi_X(t)}{dt^2} = e^{(e^{it}-1)\lambda}i^2\lambda^2 e^{2it} + e^{(e^{it}-1)\lambda}i^2\lambda e^{it}.$$

Thus

$$E(X) = \frac{1}{i} \frac{d}{dt} \psi_X(0) = \lambda$$
 
$$Var(X) = E(X^2) - (E(X))^2 = \frac{1}{i^2} \frac{d^2}{dt^2} \psi_X(0) - \lambda^2 = \lambda^2 + \lambda - \lambda^2 = \lambda.$$

- Characteristic Functions of Sums of Independent Random Variables
- Suppose  $X_1, \dots, X_n$  are independent random variables with respective characteristic functions  $\psi_{X_k}(t), k = 1, 2, \dots, n$ .
- Then the characteristic function of their sum  $S_n = \sum_{k=1}^n X_k$  is given by  $\psi_{S_n}(t) = \psi_{X_1}(t) \cdots \psi_{X_n}(t)$ .
- Thus if  $X_1, \dots, X_n$  iid random variables with characteristic function  $\psi_X(t)$  then

$$\psi_{S_n}(t) = (\psi_X(t))^n.$$

#### Central Limit Theorem

• Suppose  $X_1, X_2, \cdots$  is an infinite sequence of iid random variables with

$$E(X_k) = \mu, \ Var(X_k) = \sigma^2; \ k = 1, \dots.$$

 Standardize each random variable by subtracting the common mean and then dividing the difference by the common standard deviation,

$$Y_k = \frac{X_k - \mu}{\sigma} \, .$$

- Then  $Y'_k s$  are iid with  $E(Y_k) = 0$ ,  $Var(Y_k) = 1$ .
- Now define  $W_n$  by adding the first n of the  $Y_k'^S$  and scale the sum by the factor  $\frac{1}{\sqrt{n}}$  so that,  $W_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k = \sum_{k=1}^n \frac{Y_k}{\sqrt{n}}$ .

### Central Limit Theorem

Note: A useful result:

If 
$$E(|X|^n) < \infty$$
, for some n then 
$$\psi_X(t) = 1 + \sum_{k=1}^n E(X^k) \frac{(it)^k}{k!} + o(|t|^n).$$

Next we will compute the characteristic function of  $W_n$ .

$$\psi_{W_n}(t) = (\psi_{Y/\sqrt{n}}(t))^n, :: Y_k's \text{ iid}$$
$$= (\psi_Y(t/\sqrt{n}))^n, :: \psi_{Y/\sqrt{n}}(t) = \psi_Y(t/\sqrt{n})$$

• Now expanding  $\psi_Y(t/\sqrt{n})$  as given in the above note along with  $E(Y_k) = 0, Var(Y_k) = 1$  we get,

$$\psi_Y(t/\sqrt{n}) = 1 - \frac{t^2}{2n} + o(t^2/n).$$

### Central Limit Theorem

• Thus the characteristic function of  $W_n$  is given by

$$\psi_{W_n}(t) = (1 - \frac{t^2}{2n} + o(t^2/n))^n.$$

- Now we will see what happens when  $n \to \infty$ . Taking the limit,  $\lim \psi_{W_n}(t) = e^{-t^2/2} \,.$
- Thus we observe that the characteristic function of  $W_n$  converges for all t to the characteristic function of N(0,1). Thus  $W_n \in N(0,1)$ .
- This is central limit theorem.

### **Exercises**

- 1. Prove the property, if the characteristic function of X is  $\psi_X(t)$  then the characteristic function of a + bX, a, b constants is  $\psi_{a+bX} = e^{iat}\psi_X(bt)$ .
- 2. In the notes we obtained the characteristic function of a random variable  $Z \in N(0,1)$ . Using this and the property given in question 1 above, show that the characteristic function of  $X \in N(\mu, \sigma^2)$  is  $\psi_X(t) = e^{i\mu t \sigma^2 t^2/2}$ .
- 3. If *x* has Bernoulli distribution with probability of success *p* then show that the characteristic function of *x* is given by  $\psi_X(t) = (1-p) + e^{it}p$ .

### **Exercises**

4. Suppose  $X_1, X_2, \dots, X_n$  are independent random variables and each  $X_k \in N(\mu_k, \sigma_k^2)$ ;  $k = 1, 2, \dots, n$ . Then show that for any constants  $a_1, a_2, \dots, a_n$  by using characteristic functions

$$S_n = \sum_{k=1}^n a_k X_k \in N\left(\sum_{k=1}^n a_k \mu_k, \sum_{k=1}^n a_k^2 \sigma_k^2\right).$$

Deduce that if  $X_1, X_2, \dots, X_n$  are iid and  $N(\mu, \sigma^2)$  then

$$\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \in N\left(\mu, \frac{\sigma^2}{n}\right).$$