
NON INVASIVE

INFANT SLEEP APNEA DETECTION

IMPLEMENTATION GUIDE

CO321 CO324 CO325 UNIFIED PROJECT

TEAM

E/14/158: GIHAN JAYATILAKA

E/14/339: SUREN SRITHARAN

E/14/379: HARSHANA WELIGAMPOLA

E/14/237: PANKAYARAJ PATHMANATHAN

Deaprtment of Computer Engineering
Unviersity of Peradeniya

2018

Contents

1 Introduction 3

2 Abstract 4

3 Implementation 5
3.1 Device . 5

3.1.1 Pre requisites . 5
3.1.2 FSM and Run at startup . 6
3.1.3 Network setting . 6
3.1.4 Reading input . 7
3.1.5 Rotating Camera . 7
3.1.6 Pin Mapping . 7
3.1.7 Detecting the breathing pattern 8
3.1.8 Communication . 13
3.1.9 Security . 14
3.1.10 Testing . 15

3.2 MQTT Broker . 17
3.2.1 Mosquitto . 18
3.2.2 Admin . 18
3.2.3 Security . 20
3.2.4 Testing . 23

3.3 Server . 24
3.3.1 Signup . 24
3.3.2 Login . 24
3.3.3 Register device . 24
3.3.4 Delete device . 25
3.3.5 Logout . 25
3.3.6 Security . 25
3.3.7 MQTT Client . 25
3.3.8 Testing . 27

3.4 Web Interface . 27
3.4.1 Navigation Bar . 28
3.4.2 Dashboard . 28
3.4.3 Add Device . 28

1

3.4.4 Device List . 28
3.4.5 Charts . 29

3.5 Downloading the software . 29
3.6 Device . 29
3.7 Server - webserver and MQTT broker 30

2

1. Introduction

This document gives a step by step guide to implement and develop the whole
system including the hardware, software, network and security components
The source code can be obtained from :

https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/releases/v1

The system has been tested, and the testing methods have been specified in
this document. Nevertheless if there are any issues post them under issues in
aforementioned Github repository.

3

2. Abstract

Sleep Apnea is a serious disorder caused by the interruption of breathing during
sleep. This can cause the people to stop breathing for several times (even hun-
dreds) if not treated properly. It can affect people of any age. But when the babies
are affected with the condition they tend to not get up and keep on sleeping which
may risk their lives.
This is a non invasive solution based on video processing. The infant is observed
by a video camera which is connected to a single board computer (Raspberry pi)
which analyzes the video feed to diagnose breathing anomalies. The camera is
turned to a proper orientation for the observation using a robotic arm.

4

3. Implementation

3.1 Device

This device is packaged with a Raspberry Pi 3B module, Raspberry Pi Camera
module and 2 servo motors.

Figure 3.1: Preview of the device

3.1.1 Pre requisites
The requires libraries and programs are installed by the install.sh. The follow-
ing is the list of pre requisites, installation commands and their contribution for
advanced users

MQTT

pip install paho-mqtt

Python2.7

If python3 is already installed in the system please remove it before proceeding.
This can complicate things when installing python libraries.

5

Note: Currently opencv3 cannot be installed to python3 in raspberry pi. If
it is necessary to install in python3, there is a tedious way to install opencv3 to
python3 in raspberry pi 3. This is not recommended!

To uninstall python3,

sudo apt-get remove python3

Numpy

pip install numpy
This is used for faster numerical calculations.

Scipy

sudo apt-get install python-scipy
The pip package manager’s release does not have binaries compiled to the rasp-
berry pi architecture. apt has the working version.

Opencv 3

sudo apt-get install OpenCV-Python
There are numerous ways to install opencv and interface it with python. But
most of them lack binaries for the raspberry pi architecture for certain algo-
rithms. Compiling the opencv source by yourself and the apt’s release works.

3.1.2 FSM and Run at startup
When the device starts the service, initially it will be in the ready state. In this
state the device will take user input through the push down button in order to
start the analysis and communicate with the server. When the button is pressed,
the device will go to adjust camera state where the module automatically adjust
the camera angle to direct it to the infant. When the camera is rotated accord-
ingly, the state will change to analysis. In this state a video of the infant will be
recorded and analyzed. The processed information will be sent to the server for
further analysis. If the analysis state needs to adjust the camera, the state will
be changed and this will be repeated continuously.

3.1.3 Network setting
The network settings are set up when the code is inserted to the node. It is
explained in the section Downloading the software

6

3.1.4 Reading input
The device reads the input from the Raspberry pi camera. The camera is directly
connected to the device using the camera port in the raspberry pi. To take the
user input, a push down button is available to reset the device and start the ser-
vice. The input from the push down button is connected to the device using GPIO
pin 11. In order to remove the unnecessary bouncing effects, 300ms software
de-bouncing has been applied.

3.1.5 Rotating Camera
Given different lighting condition the detection of baby by the camera becomes
the most primitive task. There are two servo motors connected to the device
to turn the camera and adjust the angle of the camera to direct it to the infant.
These motors are powered by the raspberry pi itself. Motor shield was not used to
power the motors because the angle that the motors rotate are controlled by the
software itself with a safe margin. Also the motors does not absorb much power
because the camera and the equipment holding the camera is lightweight and
the current drown by the power bus in the raspberry pi is capable of supplying
the current required for the motors.
The control signal to the servo motors are sent using GPIO pins 12 and 13 in the
raspberry pi 3 module. Hardware PWM is used to give the control signal through
these pins because using software PWM is consuming CPU and it might not be
accurate when other processes are running concurrently. Since the hardware
PWM should be controlled by changing the registry values in the raspberry pi,
using pure python it is difficult to adjust these parameters. therefore, a third
party software pigpio-daemon was used. This application should be running in
background in order to change the hardware PWM values from python. This can
be accomplished by connecting to a port that is used to communicate with the
application and sending required commands through that port.

3.1.6 Pin Mapping
Apart from the pins mentioned above, GPIO pin 21 is used to connect the LED
as a output to the user to identify the state in which the device is in.

7

Figure 3.2: Pin mapping of the Raspberry pi

3.1.7 Detecting the breathing pattern

Operation

This part of the program,

• detects the breathing pattern

• analyzes it

• writes it to a detailed pdf report on the device

• transmits the results to the server

Code

The code for this algorithm is present at
https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/Algos.
Following is a detailed description for someone who wants to implement the al-
gorithm themselves in a different language etc:.

Detailed algorithm

The algorithm we propose have several steps.

• The video is taken in as an array of 8 bit unsigned integers.

8

Figure 3.3: The original video

• The video is fed to the Canny edge detection algorithm
The opencv implementation of this algorithm is used. The result is a black
and white video stream on where the white corresponds to the edges and
black to the rest.

E(t)H×W is the edge matrix.

E(t,x,y) =
{

1 if E(t,x,y) is an edge.
0 if E(t,x,y) is not an edge.

}

Figure 3.4: The edges of the video

• The region of interest A0 is chosen.
(x, y) ∈ A0
x ∈ [x0, x1], y ∈ [y0, y1]
As of now our algorithm requires a manual input for this region.

9

We hope to automate this parameter during the time from 3rd phase eval-
uation to the final evaluation.

Figure 3.5: The region of interest

• The centroid C0(t) of the edges in A0 is calculated for every t
C0(t)= (xc0(t), yc0(t)))

xc0(t) =
∑

(x,y)∈A E(t, x, y)× x∑
(x,y)∈A E(t, x, y)

yc0(t) =
∑

(x,y)∈A E(t, x, y)× y∑
(x,y)∈A E(t, x, y)

Special case:
(xc0(t), yc0(t))= (x0+x1

2 , y0+y1
2) when∑

(x,y)∈A
E(t, x, y)= 0

• Then the velocity of the centroid v(t) is calculated by,
v(t) = (xc0(t) − xc0(t−1))i+ (yc0(t) − yc0(t−1)) j

• The direction along which the velocity of the centroid v(t) lie is calculated
using the Principle component analysis as follows,
Write v(t) as a row vector

v(t) =
(

v(t).i v(t). j
)

10

v(t) =
(

vx(t) vy(t)
)

Make a matrix by taking 10 such readings and arranging them as rows,

V(t) =

vx(t) vy(t)
vx(t−1) vy(t−1)
vx(t−2) vy(t−2)

.... ...
...

vx(t−9) vy(t−9)

Find the mean of these rows,

vx(t) =
1

10

9∑
i=0

vx(t−i)

vy(t) =
1

10

9∑
i=0

vy(t−i)

Then find the difference matrix,

D(t) =V(t) −V(t) =

vx(t) −vx(t) vy(t) −vy(t)
vx(t−1) −vx(t) vy(t−1) −vy(t)
vx(t−2) −vx(t) vy(t−2) −vy(t)

.... ...
...

vx(t−9) −vx(t) vy(t−9) −vy(t)

The covariance matrix C(t) is calculated by,

C(t) = DT
(t).D(t)

C(t) is decomposed into
C(t) = P(t)D(t)P−1

(t) using eigen value decomposition.

P(t) =
(

w1x(t) w2x(t)
w1y(t) w2y(t)

)
and

D(t) =
(
λ1(t) 0

0 λ2(t)

)
Here the P(t) has the eigen vectors,

w1(t) = w1x(t) i+w1y(t) j

w2(t) = w2x(t) i+w2y(t) j

11

D(t) has their corresponding eigen values λ1(t) and λ2(t)

The bigger value of λ1(t) and λ2(t) is chosen (let it be λ1(t)) and the corre-
sponsing eigen vector w1(t) gives the direction of the breathing.

The unit vector along this direction is calculated for the next steps,

u(t)=
w1(t)

‖w1(t)‖

• Now we have u(t) and v(t). Projecting the velocity vector in the unit vector
of direction gives a scalar parameter s0(t) that can be used to determine
breathing.

s0(t) = u(t).v(t)

Figure 3.6: s0(t)

• s(0)t undergoes two smoothing techniques to give,

s1(t) ← adaptive filtered s0(t)

s2(t) ← gaussian blurred s1(t)

s1(t) = s0(t) ×0.8+ s0(t−1) ×0.2

Gaussian blurring is done with 15σ radius.

• The graph s2(t) - t looks as follows,

• The peaks are found using the technique,

s2(t) > s2(t−1) and s2(t) ≤ s2(t+1) ⇒ s2(t) is a peak.

12

The peaks are marked as following.

Figure 3.7: s2(t) with peaks marked

• The breathing intervals are calculated as the time between two peaks.

Breath number Time for cycle / (ms)
1 1200
2 1230
3 1050
4 1050
... ...
... ...
... ...
... ...

Table 3.1: Breathing time interval report

3.1.8 Communication
The system uses MQTT protocol to communicate.
This was implemented using paho-MQTT library by eclipse.
The client publishes to 3 subtopics under the main topic : user_name/device_ID.
The three subtopics are :

• Data
The device publishes the actual data to this topic. The data is sent as a json
message with two parameters : Timestamp, Array of data. The timestamp
helps in identifying duplicates and ordering. The array of data is used to
plot the graph

• Connection
This is the last will topic of a device. When a device disconnects (expected or
unexpected manner) the broker identifies this and publishes a disconnect
message to the topic. Therefore when the device connects it publishes 1
to this topic to denote that it is active and when it disconnects, the broker

13

publishes 0 to this topic to denote that it is inactive (This is used in the Web
interface).

• Alert
The algorithm provides timely alerts when there is a possibility of sleep
apnea. The device publishes to this topics in case such an alert occurs.
(This feature has been disabled due to the high number of false positives.
To enable please change the flag in config.in to true).

3.1.9 Security
The communication between Node and the Broker was secured using multiple
techniques. All these features are provided by paho-MQTT library. The security
features are actually implemented in the Broker but the device must be config-
ured to use them. Read the security section under broker for further details.

• Authenticate
Each device has device ID and access token. By combining the device ID
with the user name each device would have a unique ID (Different user
could have device with same device ID therefore user name and device ID
are combined). The combined ID acts as the MQTT user name and the ac-
cess token acts as the password. These two are used to authenticate the
device.
The MQTT user name and password are stored in the config.ini file and is
read using read function in the configparser library.
Then the user name and password can be set using username_pw_set func-
tion in the MQTT library.

• Access Control
Each device has a particular topic to which it could publish. The device
doesn’t have permission to publish to any other topics unless the device ID
and the access token are changed. The topic to which the device can publish
is: user_name/device_ID and the device can publish to any subtopic under
it.

• Encryption
The communication uses TLS encryption to communicate with the Broker.
Since the authentication send the password this is a must. It also ensures
confidential transmission of data.
No application level encryption is used since the MQTT model uses mul-
tiple subscriber publisher model and this would make key exchange mush
more complicated. Multiple subscribers imply that all the clients would
need to know the key which makes it impractical.
TLS certificate was obtained from the broker and can be set using tls_set
function in the MQTT library.

14

3.1.10 Testing
Each segmant was initialy tested as a seperate unit and finaly they were con-
nected together and tested. The information regarding the tests are as follows:

Camera Alignment

1. First, the functionality of the camera is tested. Video feed taken using
the camera was communicated to a computer using a communication pro-
tocol and the received video was displayed in computer screen. The color,
sharpness, intensity of the camera module was tested in order to configure
correct parameters.

2. Localization of the abdomen of the infant was tested using prerecorded
videos. They were analyzed in a computer and results were obtained from
three different types of videos. Results are shown below. White mask is the
predicted abdomen area, using filtering techniques and connected compo-
nent analysis.

3. The correct rotation of the camera module is tested using a picture of the
infant and gently moving the image. It is verified that the camera follows
the image with given configurations. Note: This algorithm cannot identify
sudden movements. But it won’t be a problem since infants cannot move
their body quickly.

Figure 3.8: Baby detection algorithm

15

Breathing pattern detection

• Since the video data set was not labelled, the testing required labelling as
well.

• A user friendly interface for video frame labelling was developed.

• The accuracy of the algorithm was tested by comparing the results of the
algorithm to the human labelled data.

• code : https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/Testing

• The results of the testing were used to tune the parameters of the algorithm
such as

– Radius of Gaussian filters

Figure 3.9: Unit testing of the algorithm to improve accuracy

MQTT Communication

Since Communication cannot be tested as a seperate component, it was tested
together with the broker. Refer Testing Under Broker.

Integration testing

The full system has been only tested with data sets since we are still awaiting a
response from the medical faculty to test the equipment.

16

3.2 MQTT Broker

MQTT plays a huge role in this system since all the real time data are send di-
rectly to the user instead of using the server. MQTT uses a publisher-subscriber
mechanism (as opposed to client-server). This ensures that single client can
write/listen to multiple topics while multiple clients can write/listen to the same
topic. This is a form of m-n communication and, if applied in a client-server
model could be slow and inefficient. To do this efficiently and in real time, MQTT
was chosen. MQTT messages are much more smaller (small headers) thus offer
high throughput, but cannot support larger messages. In our case this is not a
problem since messages sent are small is size.
Code for broker implementation can be obtained from:
https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/Mosquitto.

Figure 3.10: Server broker architecture

The MQTT broker was implemented independent to the server. This made
testing easier, system more secure (Breach in one system would keep the other
intact) and gave much more flexibility while developing specific features. This
would also allow us to deploy them on different servers.
Therefore the Broker must communicate with the server through a separate
mechanism. In our case two MQTT clients with the following names were used:

• Admin - Runs with the broker. Controls Broker

• Server - Runs with the client. Communicates Broker

17

This is the only pathway through which the broker and server communi-
cate and transfer information. It is used when signing in or registering new
device.The Server publishes to the Admin topic to which the Admin listens and
the Admin publishes to the server topic to which the Server listens. Since this is
a one to one communication it uses AES algorithm to encrypt the data.

The implementation of MQTT client Admin is explained in this section and
the implementation of MQTT client Server is explained in the next section

3.2.1 Mosquitto
Mosquitto is used as the MQTT Broker. It can be installed as follows:

sudo apt-get install mosquitto

The MQTT broker listens to 3 ports :

• 1883 (MQTT without TLS)

• 8883 (MQTT with TLS)

• 9001 (Websocket)

The listeners can be opened using listener in Mosquitto config file (mosquitto.conf).
The protocol of each listener must be specified. All other configuration are avail-
able in the default mosquitto config file. Configuring the security features are
explained in the next section.

3.2.2 Admin
The admin client is much similar to the MQTT client in the device. It is a python
based client created using paho-MQTT library. Only the differences are explained
in this section.
Code for admin implementation can be obtained from:
https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/Mosquitto/Admin.

• The client has a user name ("Admin") and password previously set and
these are specified in static files (Static files explained under security/au-
thentication).

• The admin is subscribed to the topic . This is the global wild card and as a
result the admin gets all the messages. Since admin is a superuser it has
access to all the topics. Thus the Admin can communicate with both the
server and the devices.
The subscription to this particular topics can be done using the subscribe

18

function in the MQTT library. The admin publishes to the Server topic.
This is done using the publish function.

• Admin controls the MySQL database used by Broker and connection to this
is made using MySQLdb connector library for python.

• In addition to TLS protection the admin uses application level encryption.
To implement this, AES algorithm and Diffie-Hellman Key Exchange pro-
tocol is used. (Explained under security). Authentication and acl are also
explained in security.

The Admin MQTT-client provides the following functionality.

Register Device

When a device is registered the Server MQTT client sends a message to this
topic with the user name and password (encrypted). Admin decrypts it and then
hashes the password before adding it into the user table.

User login

All real time updates are sent directly from the MQTT broker (Not the server)
thus the user needs access to these topics. When a user logs in Server (MQTT
client) authenticates the user and sends a message to this topic with the user
name and password (encrypted). Admin adds a temporary entry in the user ta-
ble with the user name and creates a temporary access token for the user. Then
in the acls table the Admin gives access to these topics to the user.

Then every time the Server requests for a config.js file, it checks database and
creates a config.js file with the user name, password, topic, host, port, etc. and
send it to the Server (MQTT Client) by publishing it to the topic "Server" .When
the server requests the config file, if the user name is not present in the table it
doesn’t add a new entry but instead sends the config.js file with no user name,
thus the client would get a 404 error.
The admin ensures that these entries are temporary using 4 flags:

1. last will - When a client disconnects a message is posted to the disconnect
topic by the broker. This is the last will topic. The admin listens to this and
removes the entry when the user disconnects. Disconnection occurs if user
logs out or closes tab.

2. keep-alive - When the client swiches from onee page to another the connec-
tion closes, but the entry should not be deleted (since he is still logged in).
In this case a 300s keep-alive condition is configured in client so the broker
doesn’t publish to last will topic even if the client disconnects. Once the
client reconnects the broker identifies this and keeps the connection alive.

19

3. persistence_limit- If the temporary entry exists indefinitely it is dangerous.
Thus a persistence limit of 1hr is configured. The broker disconnects the
connection after this time period and posts to the last will topic. The admin
deletes the entry. The client tries to reconnect when disconnected and as
a result a new connection with the broker is made using a new temporary
entry.

4. QOS - During the disconnection some information would be lost. In order
to avoid this, a QOS of 1 is set for each client. As a result the broker would
store the last message to each topic and when a new user connects it would
send that message.

3.2.3 Security
The broker implements security at multiple levels. At the network level a firewall
is used. At transport level it uses TLS encryption. Apart from this authentica-
tion and access control in done using auth plugin by jpmens. Communication
between broker and server is done using a MQTT client at each end and the com-
munication between these 2 clients are encrypted using AES. Diffie-Hellman Key
Exchange protocol is used for key exchange. Since sensitive information such as
passwords are interchanged this encryption is a must.

• Firewall
The firewall blocks all other ports except for 1883 (MQTT without TLS)
8883 (MQTT with TLS) and 9001 (Websocket). Firewall was implemented
using ufw (Uncomplicated Firewall) in linux (Mosquitto runs on Linux).
Firewall can be enabled using ufw enable command
All incoming and outgoing traffic could be blocked using ufw default deny
incoming and ufw default deny outgoing commands
The particular ports were allowed using ufw allow <port_no> command.

• Authenticate
Authentication is done using mosquitto auth plugin with MySQL backend.

1. Mosquitto auth plugin can be obtained from github,

2. Open config.mk and change both files and mysql to yes and then make

3. Next open a blank text file and add the static user name and pass-
words (In our case the admin client and server client

admin : admin
server : server

4. Convert to password file using following command:
mosquitto_passwd - c filename

20

5. Include this in the mosquitto.conf file using auth_opt_password_file
option.

6. Create a database in mysql with table "users" with columns "id" "user-
name", "password" and "super". Each time a device is registered, the
username and hashed password would be added to this database by
Admin MQTT client. Each time a user logs in, Admin does the same
thing.

7. Finally open mosquitto.conf file and include the auth plugin. This
includes setting the auth_plugin, auth_opt_backend, host, port, user,
pass, etc.

• Access Control
Access control is done in a hierarchical manner:

Figure 3.11: ACL

A user has read access to all the device topics, but the device has read write
access to only its device topic as shown in the diagram.

ACL is aslo implemented using mosquitto auth plugin.

1. Open the same database in MySQL as in authentication and create
a new table "acls" with columns "id", "username", "topic" and "rw".
Each time a new device is created admin (MQTT client) adds it to acl
with the corresponding topic. Each time a user logs in admin adds a
temporary entry.

2. Since the configuration in the conf file has been done in the previous
step no need to repeat.

21

• Encryption
The communication uses TLS encryption to communicate with the devices
and users. It was done using the following steps.

1. A new certificate was created as follows:
openssl genrsa -out server.key 2048
openssl req -new -out server.csr -key server.key

2. The certifice was self singed (It can be signed using a CA as well) as
follows:

openssl genrsa -des3 -out ca.key 2048
openssl req -new -x509 -days 1826 -key ca.key -out ca.crt
openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial

-out server.crt -days 360

3. The generated certificate was added to the broker and the mosquitto.conf
file was configured to include it.

4. The public certificate was added to the device.

Apart from this the communication between Admin and Client uses AES
encryption and DH key exchange. AES encyption is implemented using
cryptodome package and DK key exchange is implemented using pyDH
package. Both these packages can be installed using pip. The steps are
as follows:

1. Install necessary packages as follows.
pip install cryptodome
pip install pyDH

2. The key exchange is done using DiffieHellman() and gen_public_key()
functions and the shared key is generated using gen_shared_key() func-
tion in the pyDH library.

3. Now that we have the shared key, the key is converted to AES usable
key using AES.new() function and the encryption and decryption are
done using encrypt_and_digest() function and decrypt_and_verify() func-
tion respectively. Note that the funtion creats both the cipher text and
the tag where the tag is used for verification.

Finally the broker could be run.
To start database :

sudo service mysql start
To start Broker :

mosquitto -c mosquitto.conf

22

3.2.4 Testing
Code for broker testing can be obtained from:
https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/Mosquitto/Test.

Mosquitto provides mosquitto_pub and msoquitto_sub libraries for testing
purposes but these were not used since their usage is limited. Instead MQT-
Tlens was used to test which gives much interactive way to visualize the output.

There are no standard tests for testing mosquitto thus, the method used was
based on trial and error. Multiple test cases(python clients) were created. This
included clients with different user names, passwords, topics, anonymous clients
(without setting username or password). On the other hand the tests were veri-
fied by using the mosquitto log and MQTTlens.

The log was redirected to "stdout" by setting the log_dest in the mosquitto.conf
file. The connections, disconnections and failures were observed through the log.
This was used to verify that the user had to use the correct user name and pass-
word, and the TLS file had to be specified if connecting to specific port. Anony-
mous users were blocked on specific ports, and all other connections to unspec-
ified ports failed. (When wrong user name or password is given the connection
is refused, so the client disconnects, but if the client tries to connect to unspeci-
fied port, the firewall blocks the connection and as a result the connection fails
and an error message would be displayed on the clients side. The only successful
connections were, when both the user name and password were present in the
mosquitto back end database. Therefore it was confirmed that the firewall and
the authentication mechanism were functional.

The MQTTlens was subscribed to the topic (multilevel) wild card with the
user name "admin" and password "admin". Since admin is a super user, it could
listen to all the topics. The test for access control was done using this. The
mosquitto log would not display even if a client tried to publish / subscribe to an
unauthorized topic. But the publish/ subscribe mechanism could be checked us-
ing a super user with access to all topics. Successfully connected clients from the
previous stage were used to publish and subscribe to multiple topics. While the
admin received all the messages, only the authorized clients, were able to publish
/ subscribe to particular topics. ie: The admin only received messages published
by clients with access to particular topics. Therefore it was verified that the ACL
mechanism was functional as well.

23

3.3 Server

The server-side was designed using python based django and rest-framework. As
of djnago initially to facilitate the production environment it comes with a light
weight django server and a SQLlite database. Thus the production was initally
done using django’s server. Since it is a lightweight production level server in
order to facilitate a better deployment value the project was later transferred to
an Apache server in deployment. Since the project required a site with separate
clients with critical data it became necessary to build a reliable user login and
session management system. So django’s default login schema which facilitated
session based user login system was used.

Code for Server can be obtained from:
https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/Server.

The functionality provided by django is explained below:

3.3.1 Signup
For the signup part each attributes where obtained separately and were obtained
and processed to validated for existence and then where assigned to django’s
basic authentication models. When sending passwords via a the post method to
avoid the theft of then sha256 algorithm was used with 100000 iterations and
the final hash was stored in the server for further authentication purposes. Rest
of the data where sent in a normal manner so that it can facilitate a faster access
when needed sice they are not a one time used attribute in a session.

3.3.2 Login
When logging in the same strategy of obtaining the password and sending the
hash to the server for further processing was used for security purposes. Once
the login is facilitated relevant user was saved in the session so that the user can
access the data without having to signing in every single time.

3.3.3 Register device
In the model a user was allowed to hold several devices. Thus in the schema
devices are created with the users as a primary key. Addition devices where fa-
cilitated by the use of two particular ways. One was via the interface. Second one
was with a json request to the rest api along with the user authentication(since
a browser is not used). The devices were also responsible for the addition of data.
Since we have to deal with a million data points it made sense to break the data
into easily process able chunks. Thus data points were primary keyed with the
time stamps associated with them and the respective devices. The data insertion
was facilitated via a json response through the rest api thus enabling the devices

24

to automate the process rather than someone inserting via an interface all the
time. The data can also be retrieved via the time stamps facilitating a better data
transportation. And both the time data and the device data were denied even the
read only access for an un authorized party.

3.3.4 Delete device
The deletion of devices similar to the registering were facilitated via both the in-
terface and json response thus giving the user the option of an automated device
management if the need arises. The device related data was set to cascade on
device deletion thus saving memory. Apart from them via a json response with
the authentication the ability to delete data with time stamps were also used.

3.3.5 Logout
Logout process was done by just removing the user details saved in the session
data.

3.3.6 Security
Improper implementation of the database can lead to a sql injection problem. By
the use of django’s default user model a default check on sql requests were made
manually to prevent the improper access to the sql database. At the meanwhile a
malicious user can do a Cross-Site Request Forgery (CSRF) by the use of another
page to send requests on behalf of the user to obtain sensible data. So when do-
ing the post requests a CSFR token which is a non guessable and protected by
HTTP’s access control random number generated by the server is added to the
forms. Thus the use of this large token enabled only the right client to make
requests on their behalf. And as far as password transaction via a HTTP is con-
cerned to protect it and sha256 hashing was used as mentioned before. And for
the rest api’s since the data is sensible an authentication only access schema was
set thus even denying the read only access to the non authenticated users.

3.3.7 MQTT Client
As explained in the previous section a MQTT client with the user name "server"
runs on the server side. This is used to communicate with the Broker. Since the
broker doesn’t actually listen, the communication is done with another client in
the broker side (Admin) and in turns admin does the necessary changes in bro-
ker. The Server publishes to the topic admin Server to which the Admin listens
and the Admin publishes to the topic server to which the Server is subscribed.
The publish and subscribe would be referred as send and receive.

For security the MQTT client uses pyDH and cryptodome. These sections
were explained earlier (The implementation is the same. Refer Admin, Security

25

in MQTT broker for implementation)

"Server" MQTT client provides two functions:

Register Device

When a device is registered the broker should be notified
MQTT client sends a message to Admin with the user name and password (en-
crypted). The publishing is not done like any previous methods (creating a client
then publishing) but instead it is done using a single line helper function. The
helper function (Also provided by paho-MQTT library) is a one line implemen-
tation, which is used when a single message needs to be sent or received. The
implementation is as follows:

single("admin", payload=client.json, qos=1, hostname="<MQTT_host>",
port=8883, auth={’username’:"Server", ’password’:"server"},
tls = {’ca_certs’:"<ca_certs>}, protocol=mqtt.MQTTv311, transport="tcp")

The single function is available in the paho.mqtt.publish library. Here the
first argument admin is the topic and the payload is the encrypted username
and password. Apart from this, the host and the tls will have to be specified.
A message received authentication is not needed since a QOS of 1 is set (sent
atleast once).

User login

When a user logs in the Django does the authentication. If successful, Server
(MQTT client) gets the user and sends a message to the Admin with the user
name and password (encrypted).

Then every time the user requests for the config.js file, the Server (MQTT
Client) sends a message to the Admin with the user name and the topic needed.
Then the Server waits for the reply from the Admin. Once received, this file is
sent to the user. Therefore instead of dynamically creating this at the Server,
the config file is made by the broker (The way the admin handles this requests is
explained in the admin section).
The sending message is done using the helper function as mentioned in the pre-
vious topic. The receiving message is also done as follows.(The name of function
is simple):

msg = simple("server", qos=0, msg_count=1, retained=False,
hostname="<MQTT_host>", port=8883,
auth={’username’:"Server", ’password’:"server"}, tls = {’ca_certs’:"<ca_certs>},
protocol=mqtt.MQTTv311, transport="tcp")

26

The simple function is available in the paho.mqtt.subscribe library. Notice
that retained is False. This is important to make sure that retained messages
are not received. Apart from this the hostname and tls needs to be set like the
previous method. Once received, this message is sent to the user.

These actions should be trigerred when the user requests for the config.js file.
This is done by making a view for this particular URL in django and including
these functions inside the view. When a config.js file is requested, the server
sends a request to admin and the admin replies the config.js file which is then
redirected to the user.

3.3.8 Testing
The server is made with certain schema for models and the database. But when
it came to testing we had to check about their perfection. So tests were necessary.
But running a buggy test on the main database may ruin the structure and the
data in it. Thus for the testing purpose a new database was formed, a copy of the
original one with the test period as it’s lifetime and the unit tests where done on
them. First the test was done for the creation of objects of the database model.
Then the url mappings and rendering where validated along with the views that
managed the mapping. When the tests where done they where done divided by
their functionality rather than a whole. This unit testing mechanism helped us
identify the bugs easier and faster.

3.4 Web Interface

The Web interface plays a huge part, since most of the dynamic contents are
generated at the users machine using MQTT client rather than enforcing it from
the server. Therefore the workload on the server would be reduced whereas the
workload on the broker would increase.
Note that the MQTT broker uses publish subscriber mechanism therefore the
incremental workload is negligible.
Also Note that the usage of users resources would be simillar (Server Push vs
MQTT).
The Web interface was developed using HTML, CSS , javascript.
Apart from these the following libraries and plugins were used:

• Bootstrap

• MetisMenu

• DataTables

• Flot

• Eclipse Paho JavaScript client

27

The web interface consist st of multiple components. Each component of the
Web Interface is described below

3.4.1 Navigation Bar
The navigation bar is included in all the pages. The navigation has two section
the top bar and side bar.

• Top bar
The top bar provides two feature: logout and alerts. The alert is done using
MQTT javascrpit client. The client obtains the config.js file from the server.
It mentions the topic as <username>/+/alert (The + is a single topic wild
card therefore any alerts from devices belonging to that particular user
will be listened by this client). Therefore whenever the device sends an
alert, the web interface displays it by adding it to the list.
The logout functionality is implemented in the server (Refer server).

• Side bar
The side bar is used to go to multiple pages. It uses the metis menu package
which makes the menus much more interactive.

3.4.2 Dashboard
The dashboard provides alerts as to when a device is connected or removed.
It uses Bootstrap alerts div, to show the alerts but the functionality is imple-
mented using a MQTT javascript client. A request is made to the server and it
returns the config.js file. It specifies two topics : <username>/+/alert and <user-
name>/+/connection. Therefore whenever a device belonging to the particular
user connects/ disconnects or whenever an alert is sent it would be notified to
the user. The MQTT message is read and a alert is created and added to the
dashboard list.

3.4.3 Add Device
The add device uses a form. The devices can be added using this form. The
implementation is explained in the server.

3.4.4 Device List
Device list uses DataTalbe which provides a more interactive way to visualize
tables. The population of the table is done in the server. Apart from this it
provides a delete device functionality which is also implemented in the server.
The table has a specific column known as active which is used to see if the device
is active. This is done using MQTT javascript client. The client subscribes to
<username>/+/connections topic. Whenever a device connects a disconnects, a
message is published to this topic. Depending on the message and the device
ID the active value corresponding to a device is changed to green (active) or red

28

(inactive). (Here the "+" is a wild card for and device_id and by splitting the topic,
the 2nd part of the topic would give the device ID)

3.4.5 Charts
The charts is done through flot. This provides a way to plot real time moving
charts.
The data for the charts is obtained using MQTT javascript client. The client
subscribes to <username>/<device_id>/data topic. When the message is received,
it pushes(enque) the data to the existing queue and plots the queue. If the queue
overflows that additional length is removed (dequed).

3.5 Downloading the software

The software for the node device and the server (in case you want to run your
own server without using http://isad.teambitecode.com) is released as open-
sorce code in https://github.com/TeambiteCode/Sleep_Apnea_Detection
The latest release as of now is v1 availiable at
https://github.com/TeambiteCode/Sleep_Apnea_Detection/tree/master/releases/v1.
For the ease of use, tarballs of the code is released here

• http://teambitecode.com/projects/sleep-apnea-detection-node.tar

• http://teambitecode.com/projects/sleep-apnea-detection-server.tar

Following are the instructions on getting, setting and running the code.

3.6 Device

wget http : / / teambitecode . com / pro jec t s / sleep−apnea−detect ion / node . tar
tar −xvf node . tar
cd node
export $SDCARD=[The mount locat ion of the SD card here]
export $WIFI=[Wifi network ssid name here]
export $WIFIUSER=[Wifi username here]
export $WIFIPASS=[Wifi password here]
sudo chmod 700 i n s t a l l . sh
sudo . / i n s t a l l . sh

29

3.7 Server - webserver and MQTT broker

sudo apt−get update
sudo apt−get i n s t a l l apache2
sudo apt−get i n s t a l l mysql−server
sudo apt−get i n s t a l l php libapache2−mod−php php−mcrypt php−mysql
wget http : / / teambitecode . com / pro jec t s / sleep−apnea−detect ion / server . tar
tar −xvf server . tar
cd server
sudo chmod 700 i n s t a l l . sh
sudo . / i n s t a l l . sh

END

30

