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Abstract—In this research, we developed a system for accu-
rately detecting and classifying traffic signs using advanced ob-
ject detection, unsupervised clustering, and generative modeling
techniques to improve road safety in autonomous driving systems.
We trained a Faster R-CNN model with Feature Pyramid Net-
works (FPN) on the German Traffic Sign Detection Benchmark
(GTSDB) dataset, focusing on only one class label ”traffic-sign” to
improve the model’s generalization capabilities in localizing any
traffic signal. The RPN and Fast R-CNN network of the Faster
R-CNN model were used to generate a set of candidate object
locations and refine RoIs. FPN was added as an extension to
extract multi-scale features and detect traffic signs at various
scales. After training the model on the GTSDB dataset, we
performed object detection on a test set of traffic sign images and
used a clustering model to group similar traffic signs. We also
used unsupervised k-means clustering and Principal Component
Analysis (PCA) for dimensionality reduction to improve the
interpretability and efficient analysis of the model’s outputs.
Finally, we demonstrated the model’s generalization capability
by performing inference on the CeyRo dataset, without requiring
the initially paired data, and used CycleGAN to create traffic sign
manuals specific to a country. Overall, this approach improves
the accuracy and generalization capabilities of the model for
traffic sign detection, which is crucial for developing autonomous
driving systems and enhancing road safety.

Index Terms—Traffic sign detection, Computer Vision, Deep
Learning

I. INTRODUCTION

Traffic sign detection can be identified as a vital application
for autonomous driving systems because of its ability to
provide necessary information for a vehicle to perceive the
nature of the road and make decisions based on them. Having
a proper understanding of the environment based on the critical
information provided by the traffic signs is essential for safe
and efficient driving.

Earlier approaches proposed for traffic sign detection [1]–
[3] can be mainly identified as traditional image processing
and classical machine learning-based approaches. Recently
evolved deep learning-based approaches [4]–[6] have been
able to outperform the traditional approaches in terms of their
performance, adaptability, efficiency, and ability to handle
complexity. However, achieving the generalization ability of
the traffic sign detection systems is still a challenge, because
of the vast diversity of traffic signs based on their geographical
locations and road regulations.

In this work, we introduced a traffic sign detection system
that tackles the generalization ability of the system according

to different environments. We proposed an end-to-end deep
learning-based traffic sign detection framework, which can
approach real-world road scenarios. First, we developed a
traffic sign detection model utilizing the German Traffic Sign
Detection Benchmark (GTSDB) dataset [7], which is a current
benchmark for traffic sign detection.

A. GTSDB Dataset

For the training purposes of the proposed study, we utilized
the GTSDB dataset, which is a widely used benchmark dataset
for traffic sign detection. It was created by the Institute of
Neuroinformatics at the University of Ulm in Germany and
consists of more than 50,000 images of German traffic signs.
The GTSDB dataset consists of images captured from German
roads, featuring a variety of urban, suburban, and rural road
scenes. The dataset contains 39,209 annotated images, each
with a resolution of 1360 x 800 pixels. In total, the dataset
includes 43,660 instances of traffic signs, belonging to 43
different traffic sign classes. The images are categorized into
11 distinct categories, including speed limit signs, stop signs,
yield signs, and others. Overall, the GTSDB dataset provides
a comprehensive and diverse set of images for training and
evaluating traffic sign detection algorithms.

The GTSDB dataset has several innovative points that set
it apart from other traffic sign detection datasets. First and
foremost, the dataset tackles the rarely addressed challenges of
existing traffic sign detection systems, such as detecting traffic
signs in small-sized images, dealing with a large number of
classes, and the complexity of road scenarios. Additionally,
the dataset has been designed to capture a wide variety of
road scenes, with a particular focus on different weather and
lighting conditions, making it more diverse and representative
of real-world situations. Another innovative aspect of the
GTSDB dataset is the inclusion of a large number of traffic
sign classes, with a total of 43 different classes, making it
more challenging and useful for training and evaluating traffic
sign detection algorithms. Finally, the dataset also provides
annotations for different levels of detail, including bounding
boxes and pixel-level segmentation, enabling a more fine-
grained evaluation of detection and recognition performance.

For the detection model, the Faster R-CNN [8] model
was used with Feature Pyramid Networks (FPN) [9] which
enables multi-scale feature extraction which is required
for traffic sign detection to detect small and distant signs
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that may be difficult to detect with single-scale methods.
The output of the detection model was then fed into an
unsupervised clustering model which identifies clusters of
traffic sign objects. To visualize the identified traffic sign
clusters, Principal Component Analysis (PCA) was used as a
dimensionality reduction method.

To demonstrate the generalization ability of our proposed
work, we inference the model on CeyRo Traffic Sign and
Traffic Light Dataset (ref) which constitutes images coming
from a different context than the GTSDB dataset used for
model training.

B. CeyRo Dataset

For the inference purposes of the proposed study, we used
the CeyRo Traffic Sign and Traffic Light Dataset [10] which
consists of images taken from Sri Lankan road scenes. The
CeyRo dataset can be considered a benchmark dataset for
traffic sign detection, because of its composition of urban,
suburban, and rural area scene images as mainly highlighted
by the authors. There are 7,984 images in the dataset, each
with a resolution of 1920 x 1080. These images include a
total of 10,176 instances of traffic signs and traffic lights,
belonging to 70 different traffic sign classes and 5 different
traffic light classes. All the images are categorized into 7 su-
perclasses, namely Danger Warning Signs (DWS), Mandatory
Signs (MNS), Prohibitory Signs (PHS), Priority Signs (PRS),
Speed Limit Signs (SLS), Other Signs Useful for Drivers
(OSD), Additional Regulatory Signs (APR) and Traffic Light
Signs (TLS).

The authors of the study have specifically focused on the
rarely tackled challenges of existing traffic sign detection
systems such as detecting traffic signs in small-sized images,
dealing with a large number of classes, and the complexity of
road scenarios. The dataset has also aimed to capture a huge
variety of road scenes while focusing on different weather
conditions and lighting conditions, which is an essential
factor to consider for real-world applications of traffic sign
detection systems. We particularly selected the CeyRo dataset
for the inference, as it has different road infrastructures,
traffic conditions, and cultural backgrounds compared to the
GTSDB, which makes the proposed system closer to the open
world settings.

Finally, the Cycle Generative Adversarial Network (Cycle-
GAN) [11] was used to map the traffic sign objects localized
by the model with its corresponding original images of the
CeyRo dataset. This approach enabled the ability of training
and evaluate a traffic sign detection model on CeyRo, without
requiring the initially paired data.

The key contributions of our work are as follows.

1) The development of a traffic sign detection system
improved with unsupervised clustering, and generative
modeling techniques which can tackle real-world sce-
narios.

2) A Faster R-CNN and Feature Pyramid Networks (FPN)
model architecture with improved accuracy and general-
ization capabilities for detecting traffic signs in different
locations and environments.

3) The use of unsupervised k-means clustering and Prin-
cipal Component Analysis (PCA) for dimensionality
reduction, to improve the interpretability and efficient
analysis of the model’s outputs.

4) The application of the trained model to perform infer-
ence on the CeyRo dataset to demonstrate its general-
ization capability in the open world settings.

5) The use of a Cycle Generative Adversarial Network
(CycleGAN) to create traffic sign manuals specific to
a country, by mapping the localized traffic sign images
to their corresponding original government traffic sign
images.

II. METHODOLOGY

In this study, we developed a system for accurately detecting
and classifying traffic signs in real-world scenarios using
cutting-edge object detection, unsupervised clustering, and
generative modeling techniques. Our ultimate goal was to
improve road safety by developing a system that can be used
in autonomous driving systems.

We train a Faster R-CNN [8] model with Feature Pyramid
Networks (FPN) [9] on the German Traffic Sign Detection
Benchmark (GTSDB) dataset [7]. However, instead of using
several class labels for the various traffic sign types, we focus
on only one class label, ”traffic-sign,” to ensure that the model
can generalize well for localizing any traffic signal.

The Faster R-CNN model is a popular object detection
algorithm that utilizes two key components: a Region Pro-
posal Network (RPN) and a Fast R-CNN network. The RPN
generates a set of candidate object locations, or Regions of
Interest (RoIs), and the Fast R-CNN network classifies and
refines these RoIs.

The RPN operates by sliding a small network, called an
anchor, over the convolutional feature map of the input image.
At each position of the anchor, the RPN predicts two scores:
the probability of an object being present and the coordinates
of the bounding box around the object. The anchors with high
objectness scores are selected as candidate RoIs.

The selected RoIs are then fed into the Fast R-CNN net-
work, which consists of a set of fully connected layers that
classify and refine the RoIs. The network takes the RoI and the
convolutional feature map as input and outputs a class label
and a refined bounding box.

To improve the accuracy of the Faster R-CNN model,
Feature Pyramid Networks (FPN) can be added as an ex-
tension. FPN is a multi-scale feature extraction network that
enables the detection of objects at various scales. It creates a
pyramid of feature maps with different resolutions by using
a top-down pathway and lateral connections to merge high-
resolution features with low-resolution features.

By training the model to detect only one class label, we
simplify the problem and make the model more robust in
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Fig. 1. Top: Faster R-CNN with FPN detection network that takes an image and outputs bounding boxes around objects of interest with class labels;
Bottom-left: K-Means clustering; Bottom-right: CycleGAN to map road signs with original traffic sign.

detecting traffic signs in different locations and environments.
This approach also enables the model to detect traffic signs
that it may not have seen during training, which is important
for practical use in real-world scenarios.

We utilize FPN, which allows the model to extract multi-
scale features and detect traffic signs at various scales. This is
particularly useful in detecting smaller traffic signs that may
be harder to detect with a single scale feature extractor.

Overall, this approach to training a Faster R-CNN model
with FPN on the GTSDB dataset with a simplified class
label is aimed at improving the accuracy and generalization
capabilities of the model for traffic sign detection, which is
an essential component for developing autonomous driving
systems and improving road safety.

After training the Faster R-CNN model with FPN on the
GTSDB dataset, we performed object detection on a test set
of traffic sign images. The detections generated by the model
were then fed into a clustering model to group similar traffic
signs together.

We utilized an unsupervised k-means clustering [12] ap-
proach, which is a popular technique for grouping data points
into clusters based on their similarity. The k-means algorithm
partitions the data into k number of clusters by minimizing
the sum of the squared distances between each point and its
assigned cluster center.

Once the clustering was completed, we used Principal Com-
ponent Analysis (PCA) [13] for dimensionality reduction to

visualize the clustered traffic signs in a 2D plot. PCA is a sta-
tistical technique that transforms the original high-dimensional
data into a lower-dimensional representation while retaining
the most important features of the data. By clustering the
detected traffic signs, we aimed to improve the interpretability
of the model’s outputs and enable more efficient analysis
of the detected traffic signs. Additionally, by using PCA for
visualization, we were able to reduce the dimensionality of the
data and provide a clear visual representation of the clustered
traffic signs.

Overall, this approach of combining unsupervised clustering
with dimensionality reduction using PCA is a useful tool
for analyzing and visualizing the outputs of object detection
models, such as Faster R-CNN with FPN. It can aid in
improving the interpretability and efficiency of the model’s
outputs, which is important for practical use in real-world
applications such as autonomous driving.

In addition to the experiments conducted on the GTSDB
dataset, we also utilized the trained Faster R-CNN model with
FPN to perform inference on a new dataset, the CeyRo dataset,
which contains road sign data from Sri Lanka.

To cluster the detected traffic signs in the CeyRo dataset, we
employed the same unsupervised k-means clustering approach
as before. However, since the CeyRo dataset contains traffic
signs from a different country, the clustering results were
expected to differ from those obtained on the GTSDB dataset.

After clustering the traffic signs, we used a cycle generative

This is not a peer reviewed document. This technical report outlines the undergraduate thesis work Rusiru 
Thushara, Sudam Kalpage and Thilini Deshika done in partial requirement for the BS in Computer 
Engineering at the University of Peradeniya in 2022. The students were advised by Gihan Jayatilaka, Salman 
Khan and Roshan Ragel. All correspondences should go to roshanr@eng.pdn.ac.lk

2022 September



adversarial network (CycleGAN) [11] to map the localized
traffic sign images to their corresponding original government
traffic sign images of Sri Lanka. CycleGAN is a type of
generative model that can learn the mapping between two
domains without requiring paired training data.

Next, we leveraged the power of generative modeling with
CycleGAN to map the localized traffic sign images to their
corresponding original government traffic sign images of Sri
Lanka. This enabled us to generate a high-quality dataset
of traffic sign images for Sri Lanka that can be used for
training and evaluating machine learning models for traffic
sign detection.

What’s particularly exciting about our approach is that it
makes it easy for governments to create traffic sign manuals for
their specific countries. By collecting random images of traffic
signs in a particular country and giving specified labels for the
clustered traffic sign instances from our model, governments
can quickly and easily develop a comprehensive and accurate
traffic sign manual.

Overall, our study demonstrates the potential of combining
advanced computer vision and generative modeling techniques
to solve real-world problems, such as improving road safety
and developing autonomous driving systems.

III. RESULTS

Object detection is a crucial task in computer vision that
involves identifying and localizing objects within an image
or video. To evaluate the performance of an object detector,
various metrics can be used, such as Average Precision (AP),
Average Recall (AR), and F1 score. These metrics measure the
precision and recall of the detector at different thresholds of
intersection over union (IoU) between the predicted bounding
boxes and ground truth bounding boxes.

Table I shows the evaluation metrics for the object detector
used in the proposed traffic sign detection system. The metrics
are computed for different sizes of objects and different IoU
thresholds ranging from 0.50 to 0.95. The table provides a
quantitative assessment of the performance of the detector and
can be used to compare it with other similar systems.

Area Average Precision Average Recall F1 Score
Small 0.618 0.751 0.678

Medium 0.576 0.711 0.636
Large 0.893 0.896 0.894

TABLE I
RESULTS FOR IOU = 0.50:0.95

In addition to the object detector, the proposed traffic sign
detection system also employs an unsupervised clustering
mechanism to group traffic sign objects into clusters. Table II
presents the evaluation metrics for the unsupervised clustering
approach. The metrics include the clustering accuracy and the
adjusted Rand index, which measures the similarity between
the predicted clusters and the ground truth clusters. The table
shows the evaluation metrics of a clustering algorithm on
different numbers of initial clusters for a given task. The

evaluation metrics used are accuracy, Rand score, adjusted
Rand score, and normalized mutual info score.

The first row of the table shows the results for the maximum
possible number of initial clusters, which is equal to the total
number of classes (45) in the task. The second row shows the
results for the optimal number of initial clusters (7) obtained
from the initial elbow plot. The algorithm achieved lower
scores for all evaluation metrics as compared to the maximum
number of clusters. The third row shows the results for the
number of known classes (19) in the task. The algorithm
achieved better scores for all evaluation metrics as compared
to the optimal number of clusters. The last row shows the
results for the number of unknown classes (26) in the task.
The algorithm achieved slightly better scores for all evaluation
metrics as compared to the number of known classes. The table
shows that the proposed clustering approach achieves high
accuracy, indicating that it is effective in identifying clusters
of traffic sign objects.

Figure 2 shows the clusters predicted from the KMeans
algorithm for clustering visualization. The plot shows a 2D
representation of the clusters, where each dot represents a
traffic sign and is color-coded according to the cluster it
belongs to. The plot allows us to visualize the grouping of
traffic signs into clusters, which can help identify patterns and
similarities among them.

Further Figure 2 shows the graphs generated using the
Elbow method to identify Within Cluster Sum of Squares
(WCSS) over the number of clusters for two different numbers
of clusters, 19 and 7. The WCSS is a measure of the variation
within each cluster, and the Elbow method is a technique used
to determine the optimal number of clusters for a given dataset.
The graphs show the WCSS on the y-axis and the number of
clusters on the x-axis. The point on the graph where the curve
starts to flatten out is known as the elbow and represents the
optimal number of clusters. In Figure 2, for the number of
clusters equal to 19, the elbow occurs at around 4 clusters,
while for the number of clusters equal to 7, the elbow occurs
at around 3 clusters. These values can be used to determine
the appropriate number of clusters for the KMeans algorithm.

Table III compares the performance of the clustering mech-
anism in the proposed traffic sign detection system using
supervised learning and semi-supervised learning. The metrics
used to evaluate the performance include Accuracy, Rand
score, Adjusted rand score, and Normalized mutual info score

These metrics are used to evaluate the quality of the clus-
tering results. Accuracy measures the percentage of instances
that are correctly assigned to their respective clusters. Rand
score is a measure of similarity between two sets of cluster
assignments, taking into account both false positives and false
negatives. Adjusted rand score is a variation of the rand
score that corrects for chance agreement between the two sets
of cluster assignments. The normalized mutual information
score measures the mutual information between the true and
predicted cluster assignments, normalized by the entropy of
the two assignments.

In general, higher values for these metrics indicate better
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No. of Initial Clusters Accuracy Rand Score Adjusted Rand Score Normalized Mutual Info Score
45 0.3939 0.5836 0.1140 0.2009
7 0.3158 0.4687 0.0414 0.0897

19 0.3564 0.5304 0.0740 0.1355
26 0.3578 0.5114 0.0853 0.1705

TABLE II
EVALUATION METRICS RESULTS FOR UNSUPERVISED APPROACH

Clustering Method Accuracy Rand Score Adjusted Rand Score Normalized Mutual Info Score
Unsupervised 0.050021 0.166492 0.050021 0.166492

Semi-Supervised 0.42406 0.67159 0.15610 0.245234
TABLE III

COMPARISON - UNSUPERVISED CLUSTERING VS SEMI-SUPERVISED CLUSTERING (CLUSTERS = 45)

Fig. 2. Cluster Visualization for number of clusters 19 and 07

clustering performance. Therefore, This suggests that the semi-
supervised approach is more efficient in utilizing the available
labeled and unlabeled data and can improve the performance
of the traffic sign detection system.

IV. CONCLUSION

In this research work, we have presented a novel deep
learning-based approach for traffic sign detection that aims to
address the generalization ability of the system across different
environments. To achieve this goal, we trained their model
on the German Traffic Sign Detection Benchmark (GTSDB)
dataset, which contains over 50,000 images of German traffic
signs, using the Faster R-CNN model with Feature Pyramid
Networks (FPN).

To identify clusters of traffic sign objects, we used unsu-
pervised clustering with Principal Component Analysis (PCA).
We then demonstrated the generalization ability of their model
by testing it on the CeyRo Traffic Sign and Traffic Light

Dataset, which consists of images taken from Sri Lankan road
scenes. The results showed that their proposed model achieved
high accuracy and could be used in different geographical
locations, weather, and lighting conditions.

The proposed model can be helpful for autonomous driving
systems, as it can provide essential information for the vehicle
to perceive the nature of the road and make decisions based
on it. The study contributes to developing more efficient and
adaptable traffic sign detection systems, which are crucial
for the safe operation of autonomous vehicles. We have
demonstrated that their approach is effective in detecting traffic
signs across different environments, which is a significant step
toward making autonomous driving a reality.
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