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1 Introduction

Image classification is the most basic task of computer vision. This has been studied for a longer
period of time with classical, modern learning, and hybrid algorithms. This work attempts to evaluate
the performance of similarity search as a tool for image classification. Similarity search is used
after encoding the images by a neural network. We try to evaluate a parallel implementation of
similarity search for its runtime as well as accuracy for the task. This report presents an overview of
the individual components used in the related work section. Our experimental setup is mentioned in
the methodology section. The time and accuracy results are presented and analyzed next. Finally,
several conclusions are drawn from the observation.

2 Related work

Neural Networks have been the state-of-the-art (SOTA) for image classification since 2012[12]1.
Preliminary information about the neural networks is omitted in this report since it is not the focus
area of the project. Almost every Neural Network architecture has two components; namely, the
embedding backbone and the classification head. The general idea is that the backbone (mostly
convolutional) will transform the image into a meaningful representation that could be classified by
the head (mostly fully connected). Generally, the backbones are deep and the heads are shallow. As of
today, there are backbones that go hundreds of layers deep [17]. The decision heads have been 1 or 2
layers in the past. Modern architectures have heads that are only one layer deep [8]. Recently, vision
transformers [7] based on self attention has replaced (or complemented) convolution backbones.

Datasets are an integral part of image classification problems in both developing algorithms/systems
(ie: training data) and evaluating the systems (testing and validation). The datasets are of varied
image size, count and diversity. In addition they are of varied difficulty (determined by the number
of classes and the fine/coarseness of labels). The smallest/easiest of the spectrum are MNIST [15],
CIFAR 10 [10], CIFAR 100 [11] which deal with small images of handwritten digits and images.
Imagenet [6]is a larger dataset. Tiny Imagenet is a smaller version of the same dataset [14].

Similarity search is a classical problem in algorithms. This line of work attempts to find the most
similar elements among a set of elements to a given element. Approaches differ in this domain
according to what is measured as similarity and what number of similar elements are searched for.
Nearest Neighbour Search is a kind of similarity search when the set of elements are on a metric
space (a space with a distance function defined on every pair of elements). A generalized version of
this is the k-Nearest Neighbour search (KNN) where the k-closest elements are picked instead of one.

Parallel implementation of algorithms refers to implementing an algorithm such that it can utilize
more than one processing unit at a time. Processing units can be either CPU, GPU, TPU or application-
specific processor cores. In general, parallel implementations speed up the algorithms. As far as
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neural networks for large-scale computer vision tasks are concerned, they have had parallel GPU
implementations for as long as they were performing well [9, 1, 16]. Neural networks (on both
their parameter optimization and prediction steps) are inherently parallel. Because of this reason,
most neural network based parallelization is not studied rigorously. It is mostly considered to be an
implementation detail.

Parallel implementation of other algorithms (such as similarity search) is both a rigorous theoretical
research area as well as a practical engineering field. FAISS [5] is a library that supports parallel
similarity search on both CPU and GPU. The library goes for approximate k NN search for time
efficiency. The CPU acceleration is achieved by multi threading using the BLAS library (originally
[13]). In addition, the SIMD instructions are used under the hood for faster computation. The GPU
acceleration is done with the CUDA architecture in mind. The implementation exploits the memory
and register architecture of CUDA to gain maximum performance.

3 Methodology

This work formulates the image classification problem as a two stage problem. Given (xi ∈
RH×W×3, yi ∈ [C]) being an image and it’s true label, we find the predicted label ŷi. Let the training
set be (Xt

i , Y
t
i ) and test set be (Xs

i , Y
s
i ). The neural network (f ) embeds the xi’s into f(xi) ∈ RD.

The similarity search algorithm (S) finds k nearest neighbours to f(xs
i ) given embeddings of all the

training data points f(Xt
j). We infer the predicted label of xi based on the mode of the true labels of

the k nearest neighbors.

We run this experiment using ViT as the embedding neural network on Imagenet2 and Tiny Imagenet
datasets. We measure the time it takes to run the experiments. We report the results as the percentile
accuracy of the predicted labels and the time taken for embedding and similarity search.

All embeddings are done on 2 Nvidia A5000 GPUs. All CPU tests for similarity search are done on
server nodes with 32 processor cores and 64 GB RAM. All GPU tests for similarity search is done
on similar server nodes with an additional Nvidia A5000 GPU (of 24GB VRAM). Experiments are
implemented in python (including time measurement).

4 Results and Analysis

First, we measure the time taken for the neural network embedding. This result is shown in Table 1.
As per the results, modern GPUs can do the embedding step for the complete Imagenet dataset in
around an hour.

Table 1: Time Taken for Embedding

Dataset Time Taken (mm:ss)
Tiny Imagenet 4:58

Imagenet (10% of the dataset) 8:56
Imagenet (full dataset) 64:22

Then, we measure the time taken for similarity search using the FAISS library. The results are
reported in Table 2. We measure the time taken to build the index, query the index for the training
examples and query the index for the validation set examples.

The time taken to build the index is almost negligible for both CPU and GPU. This implies that no
heavy lifting is done on the index-building step. Querying the training and validation sets take time
comparable to the size of the dataset. It should noted that CPU time for querying passes the time for
embedding when the dataset is larger (imagenet).

In addition to the time consumption of the algorithms, we show the accuracy3 of the approach tested
in Table 3. Both training and validation set results are shown for our method. The column DINO has
the result from the paper proposing our embedding technique[2]. This results is from the embedding

2We refer to Imagenet 1k dataset as Imagenet in this report.
3All accuracies mentioned in this report are top 1 accuracies.
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coupled with a trainable decision head. The last column (SOTA) has the state of the art result for the
particular dataset as of the time of writing this report [3, 4].

Table 2: Time taken for similarity search

Experiment Index building time (sec) Similarity Search Time (sec)
Dataset Device Train Set Validation Set

Tiny Imagenet CPU 0.03 11.40 0.75
GPU 0.02 7.94 0.76

Imagenet (10%) CPU 0.03 15.95 6.01
GPU 0.12 1.32 0.46

Imagenet CPU 0.30 4689.15 (= 78:09) 364.18 (=6:04)
GPU 0.29 108.72 4.24

Table 3: Top 1 Accuracy Comparision (percentage)

Dataset Our’s (Train) Our’s (Validation) DINO SOTA
Tiny Imagenet 81.66 77.73 - 92.98

Imagenet (10%) 79.70 73.07 - -
Imagenet 83.47 77.77 80.01 91.10

The results show that kNN algorithm is a good choice of similarity search for the image classification
problem. Trying to match the image embeddings to the images with known labels in the training set
is a feasible approach for image classification. While this gives a direct window to the full training
dataset in the query step (in contrast to total deep learning models having to learn this in their decision
heads), the actual accuracy values are lagging behind. However, the gap is small enough for this
approach to be valid.

Similarity search has been seeded up by parallel implementation in the FAISS library. However, it
is clearly visible that GPU acceleration outperforms CPU acceleration by several folds for larger
datasets. However, the difference is not clearly visible for smaller datasets. This can be attributed to
multiple factors. GPUs have more cores than CPUs and they can execute more instructions at a given
time period. However, copying data from CPU memory to GPU memory takes time. This overhead
shadows the speedup gained by the higher core count for smaller datasets.

5 Conclusion

This work has shown the viability of using similarity search techniques for image classification
problems. The experimental setup which combines vision transformer based embedding (trained
as per DINO) with FAISS library similarity search (k=10 k nearest neighbor search with Euclidean
distance as the dis-similarity metric) has shown competitive performance for Imagenet and Imagenet
tiny datasets in terms of accuracy. The GPU-accelerated version of the algorithm reduces the runtime
so this is a viable solution for modern image classification systems. In future work, this idea could be
extended to multiple encoding techniques. Other ViT variants as well as Conv architectures can be
explored. In addition, multiple GPU benchmarks for similarity search could be explored.
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