CMSC 351 (2022s)
Quickselect algorithm for finding the $k^{\text {th }}$ small/larg. est element in an array

This document can be used a supplementary material for the PDF lecture notes on https://www.math.umd edu/~immortal/CMSC351/notes/kthorder.pdf

Note:- Elements are sorted along the columns $\$$ Elements are not sorted along the rows

However MOM is smaller than or equal to two medians and greater than or equal to another two medians
$f_{s}(n)$ is the \# elements smaller than MOML

$$
\begin{aligned}
& \frac{3 n}{10}+\frac{1}{2} \leq \frac{f(n)}{5} \leq \frac{3 n}{10}+\frac{1}{2}+\frac{2 n}{5}-2 \\
& \frac{3 n}{10}+\frac{1}{2} \leq f_{5}(n) \leq \frac{7 n}{10}-\frac{3}{2} \\
& 3 n / 10 \leq f_{5}(n) \leq 7 n / 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { Definitely smaller than M } \\
& =3\left(\frac{n}{5}-1\right) \frac{1}{2}+2=\frac{3 n}{10}+\frac{1}{2}
\end{aligned}
$$

No idea
Definitely larger than IM

$$
\begin{aligned}
& =2\left(\frac{n}{5}-1\right) \frac{1}{p} \times 22 \\
& =\frac{2 n}{5}-2
\end{aligned}
$$

$f_{l}(a)$ is the \# of elements larger than

$$
\frac{\text { MoM }}{3 n / 10} \leqslant f_{d}(n) \leqslant 7 n / 10
$$

